
Categorial Grammars for
Automatic Generation of

Music
Halley Young

ICFP 2017 FARM Workshop

Outline

• Introduction to music as math vs language

• Mathematical representations of musical objects

• Categorial grammars and linguistic/musical
objects

• Use of categorial grammars to automatically
generate music

Music as Math vs Language

• Pythagoras: Music as “sounding number”

• Fast forward 2000 years: “Musica
poetica” (music as rhetoric)

Music is Numbers

MIDI: (Pitch(Int), Duration(Float), Offset(Float), Instrument(Enum))

[(64,1.0), (62,1.0), (60,1.0), (62,1.0), (64,1.0), (64, 1.0), (64,
2.0), (64,1.0), (62, 1.0), (62,1.0), (62,2.0), (64,1.0), (67,1.0),
(67,1.0), (62,1.0), (60,1.0), (62,1.0), (64,1.0), (64, 1.0), (64,
1.0), (64, 1.0), (62, 1.0) (62, 0.5) (62,0.5), (64,1.0), (62, 1.0),
(60,1.0)]

Raw audio: long list of decimal numbers between -1 and 1

Music represents a complex
mathematical object

• Pentatonic Scale

• Emphasis on pitch-class D

• Repetitive Eighth-Sixteenth-Sixteenth figure

• Inversion + Transposition of first two beats

• Repetition of first three beats

Generative Approach to
Musical Complexity

• Music is complex because a complex process
generated it

• may be possible to describe generation of
music in multiple ways

• processes described as involving musical
objects

Musical Objects
• dur :: Float

• pitch :: Int

• note :: (pitch, dur)

• melody :: List<note>

• rhythm :: List<dur>

• scale :: List<pitch-class>

• retrograde :: melody -> melody

• transposition :: pitch -> pitch

Categorial Grammars

• Linguistic Formalism based on type theory and
lambda calculus

• Used to relate various words to the composite
meaning of the entire sentence

• Words inhabit different types, but the resulting
type of the sentence is always a statement in
predicate calculus

Categorial Grammars
Kim walked and fed the dog.
Kim: k
walked: λx[Walked(x)]
and: λxλyλz[x(z) & y(z)]
fed: λxλy[Fed(y,x)]
the: λx[x]
dog: d
Kim walked and fed the dog: λxλyλz[x(z) & y(z)] (λx[Walked(x)])

(λxλy[Fed(y,x)] (d)) (k) ==
Walked(k) & Fed(k,d)

Music as Language

• Music has “semantics”

• Music has structure akin to “syntax” which interacts with and
produces the “semantics”

• This syntax/semantics related to the relationships between
musical objects

Categorial Grammars in
Music

• Words have different types := Musical objects have
different types

• The type of a composite sentence is the type of a
predicate calculus statement := The final type of a
composite piece of music is always type melody =
List<note>

• Combining words := Combining musical objects to
create other musical objects

Categorial Grammars in
Music

Objects:
rhythm = [0.5,0.5,1.0]
start_pit = 60
contour = [1,3,2]
combine :: rhythm -> pitch -> contour -> melody
Lambda expression:
λx,y,z.combine(x,y,z) 
(rhythm, [0.5, 0.5, 1.0])(start_pit, 60)),
(contour, [1, 3, 2])

Categorial Grammars in
Music

λx,y,z.combine(x,y,z) 
(rhythm, [0.5, 0.5, 1.0])(start_pit,60),
(contour, [1, 3, 2])

How combine works
Def combine(rhythm_z, start_pitch_y, contour_x):

all_pitch_sequences = start_pitch_y + cartesian_product(all_pitches, product_n =
length(contour_x) – 1)

filter(all_pitch_sequences, function_to_filter = lambda y: has_contour(contour_x, y))
good_melodies = []
For pit_sequence in all_pitch_sequences:

good_melodies.append([Note(pitch = pit_sequence[i], duration = rhythm[i]) for i in range(0,
length(rhythm)])

 return good_melodies

Hierarchical Expressions

augment :: melody -> melody
transpose :: melody -> melody
combine :: rhythm -> pitch -> contour -> melody

λx,d.[x,augment(x,d)]
λx,n.[x,transpose(x,n)](λx,y,z.combine(x,y,z) (rhythm, [0.5,
0.5, 1.0])(start_pit, (5, 0)),
(contour, [1, 3, 2]))(3)

Musical Semantics

• Semantics of individual expressions?
• the set of things in the (platonic?) universe of

musical objects that they represent
• Semantics of a melody?

• the semantics of all categorial analyses that could
be used to generate the piece of music

Automatically Generating
Musical Lambda Expressions

• Traversal of type-relationship graph

• Goal: find path from “primitive” types to
melodies (including loops)

Relationships Between
Musical Objects

Determined by what functions exist to combine them

Relationships Between Musical
Objects

The Graph Traversal
Algorithm

def genPath(desired_final_node = melody)

main_path = path in graph from base type-nodes to the desired final node (such that each
edge in the path represents a function that takes the source node and returns the root
node

for each (edge, source_node, target_node) in path:

other_source_nodes = other arguments to the function besides the specified source
node

for each source_node in other_source_nodes:

new_sub_graph = genPath(desired_final_node = other_source_nodes)

connect new_sub_graph to main_path

return main_path

Results
mel = ((lambda i1, j1: i1(j1))
((lambda i2, j2: i2(j2))(
applyAllTo , [id, augDimRepeatMelody,
addAppogiaturasMelody ,
chromaticInvertMelody]) ,
(lambda i2, j2: i2(j2))
(combine10 ,
([("pcs_list", (lambda i4, j4: i4(j4))
(combine11 , ([("chord_list",
(lambda i6, j6: i6(j6))
((lambda i7, j7: i7(j7))
(applyAllTo ,
[id , fourOf , fiveOf ,]) ,
(lambda i7, j7: i7(j7))
(combine15 , ([("degree", -1),
("scale", (lambda i9, j9: i9(j9))
(combine17 , ([("scale_type", "diatonic"),
("pc", [6,11,5]),]))),
("sign", 0),
("chord_type",
["triad","ninth", "seventh","eleventh"])
,])))),]))),
("rhythm", (lambda i4, j4: i4(j4))
(combine7 , ([("length", 2.0),
("n_length", 3),]))),
 ("octave",6),]))))[1]
writeScore(mel)

Results

Questions?

