Representation of musical notation in Haskell

Edward Lilley

Institute of Astronomy, University of Cambridge

September 9, 2017
Motivation

Edward Lilley

Representation of musical notation in Haskell
(Notated) musical pitches are the points on a lattice
(Notated) musical intervals connect the points, forming a ‘free Abelian group’ with two generators
Theory

Edward Lilley
Representation of musical notation in Haskell
Theory

Representation of musical notation in Haskell
Theory

Representation of musical notation in Haskell
Theory

Edward Lilley

Representation of musical notation in Haskell
• ‘Syntonic’ temperaments assign two frequency ratios to the two generators
• ‘Equal’ temperaments project the two dimensions down to one
Theory

- Pythagorean

 \[P5 \rightarrow \frac{3}{2}, \quad P8 \rightarrow 2 \]

- ‘Quarter-comma meantone’

 \[M3 \rightarrow \frac{5}{4}, \quad P8 \rightarrow 2 \]
Theory

- Pythagorean

 \[P_5 \rightarrow \frac{3}{2}, \quad P_8 \rightarrow 2 \]

- ‘Quarter-comma meantone’

 \[M_3 \rightarrow \frac{5}{4}, \quad P_8 \rightarrow 2 \]

- 12-equal temperament

 \[d_2 \rightarrow 1, \quad P_8 \rightarrow 2 \]

- 19-equal temperament

 \[dd_2 \rightarrow 1, \quad P_8 \rightarrow 2 \]

- 31-equal temperament

 \[dddd_3 \rightarrow 1, \quad P_8 \rightarrow 2 \]
Implementation

- Flexibility (via typeclasses) in what counts as a Pitch, Interval or Duration
- A Note is an ordered pair (Pitch, Duration)
- A Phrase is just a linked list, [Note]
- A piece of music consists of a Rose tree of musical phrases
- Internally the preferred lattice basis is (A1, d2)
- Have to invert a 2 * 2 matrix to calculate tuning map