
FARM 2016 Concert
Live Music and Visuals Produced through Functional Programming

Renick Bell
independent (Japan)
renick@gmail.com

Abstract
A concert of performances employing functional programming
techniques will take place at FARM 2016 in Nara, Japan. Eight
performances will be presented on a large full-range sound system
with video projection on two walls. Performances will include live
coding and generative systems used for both audio and visuals.

Categories and Subject Descriptors J.5 [Performing arts]

Keywords functional programming, music, art, visuals, live cod-
ing, generative art, Haskell, Scheme, TidalCycles, SuperCollider

1. Concert Overiew
A concert of performances employing functional programming
techniques will take place at FARM 2016 in Nara, Japan. While
performances have taken place as part of previous FARM work-
shops, this was the first year that a separate call for performances
was made. The call sought “proposals for live performances (audio,
visual, or both) which employ functional programming techniques
in whole or in part” and encouraged “both risk-taking proposals
which push forward the state of the art and refined presentations of
highly-developed practice”.

The concert takes place from 19:30 to 21:30 at a live house in
Nara called Beverly Hills. The sound will be diffused through a
fairly high-volume full-range PA system. The audio will be gen-
erated mostly through functional programming techniques. Those
techniques will be used in live coding and are present in the gen-
erative systems to be presented (with the exception of Yullippe’s
ambient/techno live performance accompanying the performance
of a system for generated visuals). The musical genres represented
include art music, noise, experimental music, ambient, techno, and
chiptunes. There will be two projectors on which various visuals
will be presented, ranging from code and an interpreter in the case
of live coding to system visualization to rendered graphics.

Performances will be presented by the following performers,
listed alphabetically by surname or group name:

• Renick Bell
• Alexandra Cardenas
• Atsuro Hoshino

• Akihiro Kubota
• Jay McCarthy
• RAW (a duo of Seluk Artut and Alp Tuan)
• Francis Gene Shuman with Yullippe
• Atsushi Tadokoro

There are some commonalities between performers regarding
systems and languages used for performances.

• TidalCycles [10] (used by Cardenas, Kubota, Tadokoro)
• SuperCollider [9] (used by Bell, Cardenas, Hoshino, Kubota,

RAW, Tadokoro)
• Haskell [12] (used by Bell, Cardenas, Kubota, Tadokoro)
• Scheme [5] (used by Hoshino, McCarthy)

Haskell and Scheme require no introduction. In addition to
those, Shuman uses PureScript, a Haskell-inspired language. [6]
Some may be unfamiliar with the music systems above. TidalCy-
cles (formerly just Tidal) is a domain-specific language which runs
in the Glasgow Haskell Compiler interpreter.[7] It is used to gen-
erate patterns of values which can represent samples, rhythms, and
other performance parameters. It then outputs those patterns to a
synthesizer. SuperCollider is a synthesis system consisting of a
synthesizer called scsynth and a multi-paradigm programming lan-
guage specifically developed for scsynth called sclang. Five out of
six of the performances employing SuperCollider do so through
clients rather than using sclang directly or bypassing sclang.

What follows is a list of performers with brief notes edited from
performer submissions about their performances and bios.

2. Performance Notes and Bios
2.1 Renick Bell
Renick Bell will do a live-coded performance with his own library,
called Conductive, for instantiating agent processes and generat-
ing patterns which those agents follow. [2] By manipulating those
agents, which trigger a sampler or control other agents, a rapidly
changing stream of bass, percussion, noise, and tones is improvised
according to a rough sketch of the overall performance structure.
The sample player was built with hsc3, a Haskell client for Super-
Collider by Rohan Drape. [3] Interaction with the system, which is
projected for the audience, employs the Glasgow Haskell Compiler
Interpreter (ghci), the vim text editor, the xmonad window man-
ager, and the tmux terminal multiplexer.

Bell is a computer musician, programmer, and teacher living in
Tokyo, Japan. He is a graduate of the doctoral program at Tama
Art University in Tokyo, Japan. His current research interests are
live coding, improvisation, and algorithmic composition using open
source software.



2.2 Alexandra Cardenas
Alexandra Crdenas will perform through live coding, combining
her interests in improvisation, composition, programming, live
electronics and traditional music. Alexandra projects her screen for
the audience to witness what she is writing on her computer. Us-
ing SuperDirt (a SuperCollider implementation of the Dirt sampler
for the TidalCycles programming language) Alexandra creates her
own sounds in SuperCollider and sequences them using patterns
written in real time with the software TidalCycles.

Composer, programmer and improviser of music, Crdenas has
followed a path from Western classical composition to improvisa-
tion and live electronics. Using open source software, her work is
focused on the exploration of the musicality of code and the algo-
rithmic behaviour of music, especially through live coding. Cur-
rently she lives in Berlin, Germany and is doing her masters in
Sound Studies at the Berlin University of the Arts.

2.3 Atsuro Hoshino
Atsuro Hoshino will live code audio using GNU Emacs for tex-
tual user interface, SuperCollider for audio synthesis engine, and
Scheme code executed in GNU Guile for gluing things together.
The Scheme code will use the rsc3 library to interact with Su-
perCollider. [4] Sequential events are controlled with a technique
called temporal recursion. [11] Like any other recursive function,
temporal recursion is a recursive function defined in Scheme, but
taking a time stamp as an argument. This form enables asyn-
chronous updates of the body of a function without interrupting
audio events sent to synthesis engine.

Hoshino is a software engineer in Tokyo, Japan who since uni-
versity has been playing with various computer music languages.
After working with common development languages at a startup
company, he encountered Haskell and fell in love with it, though
his recent interest is growing toward the LISP language family.

2.4 Akihiro Kubota
Akihiro Kubota will perform a new kind of sound poetry using
sound data from the world’s first art satellite, ARTSAT1:INVADER
(http://artsat.jp). INVADER was equipped with Morikawa, an on-
board mission computer compatible with the Arduino open-source
hardware platform. Morikawa’s missions included algorithmic gen-
eration and transmission of synthesized voice, music and poems,
capturing and transmitting of image data and communicating with
the ground through a chatbot program. The fragmented sound data
is reconstructed as a live coding performance using TidalCycles.
Kubota finds the flexible and multiple notations of this functional
language to be very useful for real-time (live coding) performance.

Kubota is a professor of the Art and Media Course in the In-
formation Design Department at Tama Art University in Tokyo,
Japan. He earned his doctorate at the University of Tokyo in the
Faculty of Engineering. His projects, such as the ARTSAT Project
(the world’s first nano art satellite and 3D-printed artwork to be suc-
cessfully launched into deep space) incorporate the diverse fields of
bio art, digital fabrication, sound performance and the creation of
original musical instruments.

2.5 Jay McCarthy
Jay McCarthy will present a performance of Bithoven, a composer
of approximately 1.079363e+239 different compositions based on
four-part harmony and basic chord progressions. It is combined
with a purely functional audio synthesis engine based on the Ri-
coh RP2A03, found in the 1985 Nintendo Entertainment System
(NES). The synthesis engine is parameterized over a band of instru-
ments and styles of play, so that each composition can be played
in one of approximately 4.22234e+41 different arrangements or

“NEStrations”. The music is thought to be plausible to most lis-
teners as being hand-made in the era of the RP2A03.

Jay McCarthy is an associate professor of computer science
at the University of Massachusetts at Lowell and a member of
the Racket development team. He completed a Ph.D. at Brown
University in the Computer Science Department. His priorities
are programming language expressiveness, formal verification, CS
education, and family.

2.6 RAW (Seluk Artut, Alp Tuan)
The duo of Seluk Artut and Alp Tuan, as RAW, will perform using
three laptops: one dedicated to the display of visuals generated
with openFrameworks [8] and the other for Supercollider and Sonic
Pi [1]. They will use a video switcher to switch between the two
coding screens, the visuals, and a GoPro camera. Additional audio
will be produced on an Arturia Minibrute, an analog synthesizer.

Seluk Artut lives in Istanbul, Turkey, where he spends much of
his time philosophising human-technology relations. An author of
four books in the past, his artistic activities are mainly focused on
contemporary art practices based on technological embodiments.
With an academic background in mathematics and sonic arts, he
received his PhD on Philosophy of Media Communications from
the European Graduate School in Switzerland.

Alp Tugan lives in Istanbul. Tugan is an interaction designer
focusing on creative coding for his artistic productions. He has
received his MA on Visual Communication Design from Sabanci
University, Istanbul.

2.7 Francis Gene Shuman and Yullippe
Gene Shuman will present a visual performance with his system
called Epimorphism, an art project intended to simulate video feed-
back. It is written in PureScript, a strict dialect of Haskell which
compiles to Javascript and runs in web browsers supporting We-
bGL. Video feedback is a traditionally analog art form used since
the 1960s to create recursive and self similar video animations.
Despite feeling a lack of a particular domain-specific justification
for using functional programming, Shuman argues that the use of
functional programming for this project shows the inherent benefits
of functional programming: faster and more stable development of
software which is easier to reason about and to return to after sig-
nificant developmental pauses.

Yullippe will accompany the visuals with a live electronic mu-
sic performance of ambient and techno using a Moog Mother 32
synthesizer and DAW software.

Gene Shuman is a software engineer in the San Francisco area,
where he moved in 2007 after studying mathematics, computer sci-
ence, and electrical engineering at the Massachusetts Institute of
Technology. In his spare time he is an amateur musician, aspiring
artist, and world traveler. His current interests include the conver-
gence of technology and the arts, meditation, and cats.

Yullippe (Yuri Urano) is a musician from Osaka. She has been
performing as Yullippe since 2012. She has released two albums
and performs frequently at electronic music events in Japan.

2.8 Atsushi Tadokoro
Atsushi Tadokoro will perform a piece called Synesthesic Stream,
a live coding audiovisual performance using TidalCyles. All au-
dio and visuals are generated in real-time through improvisation in
code. In the work, the sounds gradually change, and the visuals fol-
low the sounds according to the performer’s “synesthesic” sense.
The visuals are generated by generating control signals in Tidal-
Cycles which are sent via OSC using Tadokoro’s own library to a
video synthesizer which he has developed using openFrameworks.

Atsushi Tadokoro is a creative coder, artist, algorithmic audio
visual improviser, and programmer. In 2010, he wrote a book “Be-



yond Interaction” which was the first openFrameworks handbook
in the world. He is a lecturer in creative programming at Tama Art
University in Tokyo, Japan and the Tokyo University of Arts.

References
[1] Aaron, S. and Blackwell, A.F. 2013. From sonic Pi to overtone:
Creative musical experiences with domain-specific and functional

languages. Proceedings of the first ACM SIGPLAN workshop on
Functional art, music, modeling & design (2013), 35–46.

[2] Bell, R. 2011. An Interface for Realtime Music Using In-
terpreted Haskell. Proceedings of LAC 2011 (Maynooth, Ireland,
2011).

[3] Drape, R. 2009. Haskell supercollider, a tutorial.
[4] Drape, R. 1998. Rsc3.
[5] Dybvig, R.K. 1996. The Scheme Programming Language:

ANSI Scheme. Prentice Hall PTR.
[6] Freeman, P. 2016. PureScript.
[7] Jones, S.P. et al. 1993. The Glasgow Haskell compiler: A

technical overview. Proc. UK Joint Framework for Information
Technology (JFIT) Technical Conference (1993).

[8] Lieberman, Z. et al. 2009. Openframeworks.
[9] McCartney, J. 1996. SuperCollider.
[10] McLean, A. and Wiggins, G. 2010. Tidal - Pattern Lan-

guage for the Live Coding of Music. Proceedings of the 7th Sound
and Music Computing conference (2010).

[11] Sorensen, A. and Gardner, H. 2010. Programming with
time: Cyber-physical programming with impromptu. ACM Sigplan
Notices (2010), 822–834.

[12] 2002. Haskell 98 Language and Libraries: The Revised
Report.


	Concert Overiew
	Performance Notes and Bios
	Renick Bell
	Alexandra Cardenas
	Atsuro Hoshino
	Akihiro Kubota
	Jay McCarthy
	RAW (Selçuk Artut, Alp Tuğan)
	Francis Gene Shuman and Yullippe
	Atsushi Tadokoro

	References

