
Structured Reactive Programming
with Polymorphic Temporal Tiles

S. Archipoff & D. Janin,
Bordeaux INP, UMR CNRS LaBRI,
Inria BSO, University of Bordeaux

@ICFP/FARM, Nara, Japan,
2016

This work is dedicated to the memory Paul Hudak.

Our proposal, implemented in Haskell, eventually result from
combining ideas both from Functional Reactive Programing and
Polymorphic Temporal Media.

1. Opening

In a world where every computed object is rendered in time

programing language constructs should derive from mathematical
properties that hold in this world. . . and not the opposite which is
very likely to fail. . .

Research context

Goal
Yet another programing language for reactive temporal media
systems

Timed & reactive
system

Temporal media
input streams

Temporal media
output streams

Main expected features
I abstract enough (structured for user),
I softly realtime (timed over real passing time),
I usable on stage (reliable),
I pervasive (mathematically robust).

Research context
Programing languages for the design of multimedia reactive systems

Existing proposals
I Functional reactive programing (reactive & timestamped),
I Polymorphic Temporal Media (structured & algebraic),
I Synchronous languages (fast & robust),
I Timed IO-automata (well-defined & checkable),
I others . . .

but mostly incomparable !

Our proposal
DSL proposal

A model-based approach : three layers
I Input-Output streams : Timed event lists (back-end),
I Polymorphic timed streams : Queue lists (mid-end),
I Handy data types : Temporal tiles (front-end).

justified by category theoretic and algebraic properties.

Moto : The more mathematically robust, the easier to use
and the longer to last.

2. Queue lists

In a world where every computed object is rendered in time

what they are and when they are combine nicely !

Queue lists (Basic)
Semantics model (almost FRP)

Let d be a type for durations,
i.e. reals (continuous) or integers (discrete) extended with +∞.

Let a be a type for temporal values,
i.e. to make it “simple” : pairs duration × value

A queue list is a mapping

q :: d∗ → P(a)

where d∗ denotes zero or positive durations
understood as passing time from origin.

Queue lists (Basic)

A queue list q example with relative durations.

•

•

•

(3, a)

(5, b)

•4 •

•

(3, c)

•2 ••
•

•

(2, d)

(3, e)

Queue lists (Basic)
Constructors and getters

Constructors
I fromAtomsQ :: P(a)→ QList d a
I shiftQ :: d∗ → QList d a→ QList d a
I mergeQ :: QList d a→ QList d a→ QList d a

with associated syntactical normal form.

Getters
I atomsQ :: QList d a→ P(a)
I delayToTailQ :: QList d a→ d∗

}
headQ

I tailQ :: QList d a→ QList d a

with a list flavor.

Queue lists (Basic)

A queue list q example with relative durations
with atoms, delay to tail and tail.

•

•

•

(3, a)

(5, b)

•4 •

•

(3, c)

•2 ••
•

•

(2, d)

(3, e)

Queue lists (Basic)
with some (quick checkable) invariants

Head/tail invariants with durations

atomsQ ◦ fromAtomsQ a == a (1)

mergeQ (fromAtomsQ ◦ atomsQ q)
(shiftQ (delayToTailQ q) (tailQ q)) == q (2)

The meaning of delay to tail

if delayToTailQ q == 0 then q == emptyQ (3)

with emptyQ = fromAtomsQ ∅:

Queue lists (Categorical properties)

General warning
We are dealing with temporal types. . . with associated durations.

Trick
Restrict to duration preserving functions.

Duration (or life expectancy)
Default duration (e.g. for queue list) is “infinite”. . .

Queue lists (Categorical properties)

Functor
Single point to point application

fmapQ :: (a→ b)→ QList d a→ QList d b

For classical usage

Applicative Functor
More and more merged applications

< ∗ >Q:: QList d (a→ b)→ QList d a→ QList d b

with pureQ = fromAtomQ.
A bit weird ?

Queue lists (Categorical properties)

Monad
Merging sub-queue lists into a single one

joinQ :: QList d (QList d a)→ QList d a

with returnQ = fromAtomQ

and substituting named time slots by queue lists

bindQ :: QList d a→ (a→ (QList d b))→ QList d b

with bindQ q f = joinQ (fmapQ f q).

A flavor of conception by refinement ?

Queue lists (Categorical properties)

Product: QList d (a + b)
Forking queue list transforms.

factorPQ :: (QList d c → QList d a)→ (QList d c → QList d b)
→ (QList d c → QList d (a + b))

©
⊗f

g

QList d c QList d (a + b)
QList d a

QList d b

with projections

fromLeftQ : QList d (a + b)→ QList d a
fromRightQ : QList d (a + b)→ QList d b

a flavor of asynchronous data-flow programming ?

Queue lists (Categorical properties)
Restricting further to emptyQ preserving functions.

Weak sum: QList d (a + b)
Joining two queue list transforms.

factorSQ :: (QList d a→ QList d c)→ (QList d b → QList d c)
→ (QList d (a + b)→ QList d c)

⊕ •f

g

QList d (a + b) QList d c
QList d a

QList d b

with injections

toLeftQ : QList d a→ QList d (a + b)
toRightQ : QList d b → QList d (a + b)

a stronger flavor of asynchronous data-flow programming ?

Queue lists (Categorical properties)

Exponent
Applying distinct transforms over time

applyQ :: QList d (QList d a→ QList d b)→ QList d a→ QList d b

a flavor of dynamic changes of transforms

An application architecture example
GUI

Piano In

Bind

Apply

Pianio Out

QList d int

QList d Midi

QList d (QList d Midi → QList d Midi)

QList d Midi

3. Reactive kernel

In a world where every computed object is rendered in time

object rendering is controlled by events !

Reactive kernel
Expected runtime architecture

With temporal values parenthesized by pairs of On and Off events:

On iv , Off iv

eventToQList

QList d iv

applyQListFunc f

QList d ov

tileToEvent

On ov , Off ov

Input : well parenthesized pairs
of On iv and Off iv events

Program : a function f
QList d iv → QList d ov

Output : well parenthesized pairs
of On ov and Off ov events

Reactive kernel
The need of unknowns

Unknown duration
In a reactive context, unknown durations arises from two sides:

I duration of timed values from On to Off events,
I duration of delay to tail between successive On events.

Unknown tails
In a reactive context, the ail of the input queue list tail is
(recurrently) unknown.

Reactive kernel
Frozen application and updates

Frozen application
An application f p :: QList d a may need to be frozen in some
additional constructor

QRec f a :: QList d a

with partial known argument p.

Class type Updatable (d , a) t
Frozen argument p :: t need to be updated. An Haskell class type

Updatable (. . .) t

closed under usual type constructs, provides generic update
functions both for unknown durations and unknown tail.

Reactive kernel
Resulting runtime architecture

On iv , Off iv

eventToQList
QList d iv

applyQListFunc f
QList d ov

tileToEvent
On ov , Off ov

Input : pairs of On iv and Off iv
events

Program : function f
QList d iv → QList d ov

Output : pairs of On ov and
Off ov events

Current implementation: The running function f can effectively be
built with all primitive and categorical constructors previously
defined.

Warning: non causal functions are easily definable. . .

4. Temporal Tiles

In a world where every computed object is rendered in time

synchronization delays matches durations

Temporal Tiles
Primitive temporal tiles

Temporal values : from temporal values (d , v)
Values rendered from to .

• •• •

(d , v)

Delays
Temporal values with no value.

• •• •

d

Temporal Tiles
Additive operators

Sum (synchronisation) : x + y

• •• • •
x y

Negation (sync. inversion) : −x

••• •
x

Difference (generalized sync.) : x − y

•
••

x

y
•

•

Temporal Tiles
Implementation

Synchronization syntactic sugar over queue lists

•

•• ••

d

ad

•

•

(3, a)

(5, b)

•4 •

•

(3, c)

•2 ••
•

•

(2, d)

(3, e)

data Tile d v = Tile d d (QList d v)

Temporal Tiles
A code example

Tiled sum

plusT (Tile d1 ad1 q1) (Tile d2 ad2 q2) =
let dt = ad1 - (d1 + ad2)

d = d1 + d2
case (compare 0 dt) of

LT -> Tile d ad1
(mergeQ q1 (shiftQ dt q2))

EQ -> Tile d ad1
(mergeQ q1 q2)

GT -> Tile d (ad1 - dt)
(mergeQ (shiftQ (-dt) q1) q2

Temporal tiles are really just a front-end to queue lists programing !

Temporal Tiles
Algebraic properties I

Delays encode durations
Delays with addition and negation are in one-to-one
correspondance with durations.

The additive tile algebra
For every tile x , the tile −x is the unique tile y such that

x + y + x = y and y + x + y = y

With the zero delay 0, temporal tiles with sum form
an inverse monoid.

Temporal Tiles
Multiplicative operators

Reset and coreset : re(x) = x − x and co(x) = −x + x

••• •
x

••• •
x

Stretch : f · (Tile d a dq) = Tile (f ∗ d) (f ∗ ad) (stretchQ fq)

• •• •

d · x

Product : x ∗ y = re(stretch(|y |, x)) + stretch(|y |, x)

• •• •

|x | · y

|y | · x

Temporal Tiles
Algebraic properties II

The multiplicative tile algebra
In the case a tile x is of non zero duration, define

1/x = (1/|x |2) ∗ x

Then, for every tile x on non zero duration, the tile 1/x is the
unique tile y such that

x ∗ y ∗ x = y and y ∗ x ∗ y = y

With the unit delay 1, temporal tiles with product form a
commutative inverse monoid.

Tile syntax
Tiles with sum and product are Num and Frac instances,
i.e. no additional syntax needed !

Temporal Tiles
Algebraic properties III

Categorical properties
Categorical properties of queue lists can be lifted to tiles.

T-calculus
The resulting DSL prototype, developed in Haskell over UISF, has
been released in α version.

5. Conclusion

Conclusion
Model based design

System (Apps)

Gestures, motions, controls,. . . Music, Video, Animation, . . .

Tile (Models)

Specialized UI

Specialized UI Specialized UI

T-calcul (Programs)

Conclusion

What is done
I a robust and versatile model for combining timed values,
I an robust reactive/realtime functional language front-end,
I a implementation prototype in Haskell for live experiments,

What remains to be done
I better runtime with automatic freeze/unfreeze (scheduling),
I assisted analysis of temporal causality (not too fast),
I assisted analysis of memory needs (not too slow),
I more experiments. . . and many more questions. . .

Conclusion

What is done
I a robust and versatile model for combining timed values,
I an robust reactive/realtime functional language front-end,
I a implementation prototype in Haskell for live experiments,

What remains to be done
I better runtime with automatic freeze/unfreeze (scheduling),
I assisted analysis of temporal causality (not too fast),
I assisted analysis of memory needs (not too slow),
I more experiments. . . and many more questions. . .

Conclusion

In a world where every computed object is rendered in time

many things have already been observed,

but not necessarily by the same observer.

	Opening
	Queue lists
	Reactive kernel
	Temporal Tiles
	Conclusion

