
Juniper: A Functional Reactive
Programming Language for the Arduino

Caleb Helbling
Tufts University

Samuel Z. Guyer
Tufts University

Workshop on Functional Art, Music, Modelling and Design
(FARM)

September 2016

Project Ideas

“Simple, clear programming environment - The
Arduino programming environment is easy-to-use
for beginners, yet flexible enough for advanced
users to take advantage of as well. For teachers,

it's conveniently based on the Processing
programming environment, so students learning

to program in that environment will be familiar
with the look and feel of Arduino”

Nope

From the Arduino Web Site

Surprise! It’s C++

(but it kinda needs to be)

// -- Attach an LED to pin 13

int led = 13;

// -- The setup routine runs once

void setup() {

// -- Initialize the pin for output

pinMode(led, OUTPUT);

}

// -- Loop is called over and over

forever:

void loop() {

digitalWrite(led, HIGH);

delay(1000);

digitalWrite(led, LOW);

delay(1000);

}

Hello, blinky world!

void blink(int pin, int interval)

{

digitalWrite(pin, HIGH);

delay(interval);

digitalWrite(pin, LOW);

delay(interval);

}

Add a momentary button
int buttonPin = 2;

int ledPin = 13;

bool ledOn = false;

void loop(){

// —- Look for press

if (digitalRead(buttonPin) == HIGH) {

// -- Wait for button release

while (digitalRead(buttonPin) != LOW) { }

// -- Toggle LED on or off

if (! ledOn) {

digitalWrite(ledPin, HIGH);

ledOn = true;

} else {

digitalWrite(ledPin, LOW);

ledOn = false;

}

}

}

Signal bounce

bool isPressed(int pin)

{

// —- Look for press

if (digitalRead(pin) == HIGH) {

// -- Wait 50ms

delay(50);

// -- Still pressed? OK, continue

if (digitalRead(pin) == HIGH) {

// Wait for the release

while (digitalRead(pin) != LOW) { }

return true;

}

}

return false;

}

Challenge: button
turns blinking led

on and off

void loop()

{

if (isPressed(buttonPin)) {

if (! ledOn) {

digitalWrite(ledPin, HIGH);

ledOn = true;

} else {

digitalWrite(ledPin, LOW);

ledOn = false;

}

}

}

Debounce

void blink(int pin, int interval)

{

digitalWrite(pin, HIGH);

delay(interval);

digitalWrite(pin, LOW);

delay(interval);

}

void loop()

{

if (isPressed(buttonPin)) {

if (! ledOn) {

ledOn = true;

} else {

ledOn = false;

}

}

if (ledOn) {

blink(13, 1000);

}

}

Does this work?

Stuck waiting
for button release

Stuck here for
2 seconds!

void blink(int pin,

int interval)

{

digitalWrite(pin, HIGH);

delay(interval);

digitalWrite(pin, LOW);

delay(interval);

}

void loop()

{

blink(13, 1000);

blink(9, 300);

}

uint32_t last_time_2 = 0;

bool led_state_2 = false;

void loop()

{

uint32_t curtime = millis();

if (curtime - last_time_1 > 1000) {

last_time_1 = curtime;

if (led_state_1)

digitalWrite(13, LOW);

else

digitalWrite(13, HIGH);

led_state_1 = ! led_state_1;

}

if (curtime - last_time_2 > 300) {

last_time_2 = curtime;

if (led_state_2)

digitalWrite(9, LOW);

else

digitalWrite(9, HIGH);

Even simpler:
blink two lights

at different intervals

This doesn’t work

Functions that use delay()
do not compose

“Blinking” is an ongoing process

A.k.a., concurrency

Need composition in time

Combining concurrent activities
requires explicit scheduling

Any reasonably sophisticated software
application for the Arduino consists of:

ad hoc discrete event scheduler +
finite state machine(s)

Fairly advanced to implement

Our Approach
Use Functional Reactive Programming to handle

events/streams of events

Use the “foldP” (fold over the past) FRP function to simulate
state machines

FRP Classification

Juniper is a higher-order discrete impure monadic FRP
Language

What this actually means:

Dynamic signal graphs allowed

Signals of signals are allowed

Lose equational reasoning to avoid space leak

No continuous signals

Language Features

• Algebraic data types
• Parametric polymorphic functions
• Lambdas
• Closures
• Type inference
• Limited dependent typing (size is part of an array type)
• Pattern matching
• Immutable data structures
• Imperative features
• Mutable references
• Inline C++

Signal Graphs
Events “flow” along signals or signals are time varying

values
Signals connected together form a directed graph

2 KB RAM à Not enough space to store the data
structure itself + necessary runtime components

One possibility: static signal graph known at compile time -
use adjacency list

Our approach: Signal graph embedded within the call graph

Signal graph representation

Signals in Juniper

type maybe<'a> = just of 'a
| nothing

type sig<'a> = signal of maybe<'a>

module Blink
open(Prelude, Io, Time)

let boardLed = 13
let tState = Time:state()
let ledState = ref low()

fun blink() = ...

fun setup() =
Io:setPinMode(boardLed, Io:output())

fun main() = (
setup();
while true do

blink()
end

)

Blinking LED in Juniper

fun blink() = (
let timerSig = Time:every(1000, tState);
let ledSig =

Signal:foldP(
fn (currentTime, lastState) ->

Io:toggle(lastState)
end,
ledState, timerSig);

Io:digOut(boardLed, ledSig)
)

module Io
...
type pinState = high | low
...

Blinking LED in Juniper

Compilation

template<typename a>
struct maybe {
 uint8_t tag;
 bool operator==(maybe rhs) {
 if (this->tag != rhs.tag) { return false; }
 switch (this->tag) {
 case 0:
 return this->just == rhs.just;
 case 1:
 return this->nothing == rhs.nothing;
 }
 return false;
 }

 bool operator!=(maybe rhs) { return !(rhs == *this); }
 union {
 a just;
 uint8_t nothing;
 };
};

type maybe<'a> = just of 'a | nothing

(([&]() -> Prelude::unit {
 while (true) {
 ...
 }
 return {};
})());

while true do
...

end

Compilation

Case Study: Digital Hourglass
Rich Set of Behaviors
• Program Mode
• Timing Mode
• Pause Mode
• Finale Mode
C++: 950 lines

(and it required a lot of thought)
Juniper: 350 lines

(and it worked the first time)

Conclusion
• Juniper is a new FRP language designed to be run on

small microcontrollers like the Arduino
• Has many functional programming features
• Compiles to C++
• Shows clear benefits for logic re-use; specifically with

time dependent behaviors

Thank you!
http://www.juniper-lang.org/

