
Exploring Melody Space in a
Live Context Using Declarative

Functional Programming
FARM Workshop at ICFP 2014, Gothenburg

Thomas G. Kristensen, uSwitch Ltd, London

Composer is a simple, responsive and extensible system
utilising logic programming to allow novices to explore

and learn music rules

Background

Background

offline

online

Background

offline

online

programmers musicians

Background

offline

online

programmers musicians

Background

offline

online

programmers musicians

Shasheela

Background

offline

online

programmers musicians

Shasheela FHarm

Background

offline

online

programmers musicians

Shasheela FHarm

Principled
approach

Background

offline

online

programmers musicians

Shasheela FHarm

Principled
approach

Graphical
score grammars

Background

offline

online

programmers musicians

Shasheela FHarm

Principled
approach

Graphical
score grammars

•Anders: Composing music by composing rules (Ph.D. thesis)
•Koops, Magalhãe and de Haas: A functional approach to automatic melody harmonisation
•Aaron, Blackwell, Hoadley and Regan: A principled approach to developing new languages for live coding
•Stead, Blackwell and Aarong: Graphic score grammars for end-users

Melody rules

• Tonic note

• Mode

• Cadence

C D E F G A B C D E

C♯ D♯ F♯ G♯ A♯ C♯ D♯

1 2

3

4 5 6

7

8

Melody rules

• Tonic note

• Mode

• Cadence

C D E F G A B C D E

C♯ D♯ F♯ G♯ A♯ C♯ D♯

1 2

3

4 5 6

7

8

Architecture

II

I

III

a.

IV V

b.

Figure 2. The OSC interface illustrated on a mobile device. Page 1
(a) contains controls for the three melody parameters: tonic note
(I), scale (II) and cadence (III); page 2 (b) contains controls for the
tempo of the song (IV) and the relative pause between notes (V).

The row at the bottom left is used to choose a mode or scale
for the generated melodies. Again, only one mode can be selected
at any given time, and if a mode already selected is tapped again,
no mode is selected. The buttons correspond to the modes (in order,
from left to right): major scale, harmonic minor scale, natural minor
scale, locrian mode, and mixolydian mode.

Cadence is selected using the buttons in the bottom right of the
interface. Again, only one cadence can be selected at a time, and
selecting the same cadence twice will de-activate it. The selectable
cadences in order are: perfect, plagal and un-named.

The interface consists of two pages. The second page of the
interface (Figure 2b) concerns itself with the tempo of the melodies
being played, and the pause between the notes being played. The
slider to the left controls the beats-per-minute (BPM), and the eight
sliders to the right controls the individual relative pauses between
notes being played. The pauses are normalised to always keep the
melody-pieces playing at the same tempo.

3.3 System architecture
The system itself is implemented in the functional programming
language Clojure. Clojure was chosen based on its libraries avail-
able for doing logic programming (core.logic) and music synthe-
sis (Overtone), and its strong concurrency support. Clojure is a
hosted language, running on the Java Virtual Machine (JVM) plat-
form. The COMPOSER program is implemented as a set of pro-
cesses, which communicate through channels in a Communicating
Sequential Processes (CSP) [10, 15] style, using the core.async li-
brary [2]. The general architecture is illustrated in Figure 3.

OSC messages are sent as UDP messages from the TouchOSC
device to an OSC server running inside the JVM. The OSC listener
is informed of OSC messages coming in. The listener takes the raw
OSC messages, such as

{:path "/1/toggle8", :host "127.0.0.1", :args (1)}

JVM

OSC server

OSC listener

Instrument state
loop

Composer loop

Overtone loop

SuperCollider

Figure 3. Overview of the COMPOSER system architecture. The
dotted arrows are sliding buffers which will drop messages if they
are not consumed when a new message comes in.

and translates them to domain-specific events, such as
{:tonic-note :C#3}.

The domain events are put on a channel for the instrument state
loop to consume.

The instrument state loop keeps track of the current state of the
virtual instrument in the system. It consumes instrument updates
and updates the instrument states, emitting new states on the in-
strument state channel. This channel in turn is broadcast onto two
other channels which feed back into the OSC listener and the com-
poser loop. The OSC listener feeds the instrument state back to the
TouchOSC interface over UDP as OSC messages, to ensure that
the performers view of the instrument state corresponds to the ac-
tual state.

The composer loop consumes instrument states, such as
{:tonic-note :C#3, :scale :major-scale, :cadence :perfect}

and constructs a logic program that is evaulated using core.logic,
to construct a stream of candidate melodies. A random melody is
selected and emitted onto the channel feeding into the Overtone
loop. The Overtone loop keeps track of which melody to play in
the next iteration, and informs Overtone as to what to play and in
what tempo. Overtone in turn co-ordinates the melody and synths
with SuperCollider.

Much of the inter-process communication described above
could have been achieved using direct process communication
rather than channels. Channels were chosen for two reasons: (1)
to decouple the processes, allowing for cleaner interfaces between
components of the system; and (2), to control the stream instruc-
tions coming in from the user of the system. As demonstrated in the
Experiments section, generating a large selection of melodies can
be very time consuming, and the goal is for the experience from
the user’s perspective to be as responsive as possible. If it takes
more than a few seconds for a new composition to be generated
and played, the instrument will not be suitable as an interactive
performance tool.

Architecture

II

I

III

a.

IV V

b.

Figure 2. The OSC interface illustrated on a mobile device. Page 1
(a) contains controls for the three melody parameters: tonic note
(I), scale (II) and cadence (III); page 2 (b) contains controls for the
tempo of the song (IV) and the relative pause between notes (V).

The row at the bottom left is used to choose a mode or scale
for the generated melodies. Again, only one mode can be selected
at any given time, and if a mode already selected is tapped again,
no mode is selected. The buttons correspond to the modes (in order,
from left to right): major scale, harmonic minor scale, natural minor
scale, locrian mode, and mixolydian mode.

Cadence is selected using the buttons in the bottom right of the
interface. Again, only one cadence can be selected at a time, and
selecting the same cadence twice will de-activate it. The selectable
cadences in order are: perfect, plagal and un-named.

The interface consists of two pages. The second page of the
interface (Figure 2b) concerns itself with the tempo of the melodies
being played, and the pause between the notes being played. The
slider to the left controls the beats-per-minute (BPM), and the eight
sliders to the right controls the individual relative pauses between
notes being played. The pauses are normalised to always keep the
melody-pieces playing at the same tempo.

3.3 System architecture
The system itself is implemented in the functional programming
language Clojure. Clojure was chosen based on its libraries avail-
able for doing logic programming (core.logic) and music synthe-
sis (Overtone), and its strong concurrency support. Clojure is a
hosted language, running on the Java Virtual Machine (JVM) plat-
form. The COMPOSER program is implemented as a set of pro-
cesses, which communicate through channels in a Communicating
Sequential Processes (CSP) [10, 15] style, using the core.async li-
brary [2]. The general architecture is illustrated in Figure 3.

OSC messages are sent as UDP messages from the TouchOSC
device to an OSC server running inside the JVM. The OSC listener
is informed of OSC messages coming in. The listener takes the raw
OSC messages, such as

{:path "/1/toggle8", :host "127.0.0.1", :args (1)}

JVM

OSC server

OSC listener

Instrument state
loop

Composer loop

Overtone loop

SuperCollider

Figure 3. Overview of the COMPOSER system architecture. The
dotted arrows are sliding buffers which will drop messages if they
are not consumed when a new message comes in.

and translates them to domain-specific events, such as
{:tonic-note :C#3}.

The domain events are put on a channel for the instrument state
loop to consume.

The instrument state loop keeps track of the current state of the
virtual instrument in the system. It consumes instrument updates
and updates the instrument states, emitting new states on the in-
strument state channel. This channel in turn is broadcast onto two
other channels which feed back into the OSC listener and the com-
poser loop. The OSC listener feeds the instrument state back to the
TouchOSC interface over UDP as OSC messages, to ensure that
the performers view of the instrument state corresponds to the ac-
tual state.

The composer loop consumes instrument states, such as
{:tonic-note :C#3, :scale :major-scale, :cadence :perfect}

and constructs a logic program that is evaulated using core.logic,
to construct a stream of candidate melodies. A random melody is
selected and emitted onto the channel feeding into the Overtone
loop. The Overtone loop keeps track of which melody to play in
the next iteration, and informs Overtone as to what to play and in
what tempo. Overtone in turn co-ordinates the melody and synths
with SuperCollider.

Much of the inter-process communication described above
could have been achieved using direct process communication
rather than channels. Channels were chosen for two reasons: (1)
to decouple the processes, allowing for cleaner interfaces between
components of the system; and (2), to control the stream instruc-
tions coming in from the user of the system. As demonstrated in the
Experiments section, generating a large selection of melodies can
be very time consuming, and the goal is for the experience from
the user’s perspective to be as responsive as possible. If it takes
more than a few seconds for a new composition to be generated
and played, the instrument will not be suitable as an interactive
performance tool.

II

I

III

a.

IV V

b.

Figure 2. The OSC interface illustrated on a mobile device. Page 1
(a) contains controls for the three melody parameters: tonic note
(I), scale (II) and cadence (III); page 2 (b) contains controls for the
tempo of the song (IV) and the relative pause between notes (V).

The row at the bottom left is used to choose a mode or scale
for the generated melodies. Again, only one mode can be selected
at any given time, and if a mode already selected is tapped again,
no mode is selected. The buttons correspond to the modes (in order,
from left to right): major scale, harmonic minor scale, natural minor
scale, locrian mode, and mixolydian mode.

Cadence is selected using the buttons in the bottom right of the
interface. Again, only one cadence can be selected at a time, and
selecting the same cadence twice will de-activate it. The selectable
cadences in order are: perfect, plagal and un-named.

The interface consists of two pages. The second page of the
interface (Figure 2b) concerns itself with the tempo of the melodies
being played, and the pause between the notes being played. The
slider to the left controls the beats-per-minute (BPM), and the eight
sliders to the right controls the individual relative pauses between
notes being played. The pauses are normalised to always keep the
melody-pieces playing at the same tempo.

3.3 System architecture
The system itself is implemented in the functional programming
language Clojure. Clojure was chosen based on its libraries avail-
able for doing logic programming (core.logic) and music synthe-
sis (Overtone), and its strong concurrency support. Clojure is a
hosted language, running on the Java Virtual Machine (JVM) plat-
form. The COMPOSER program is implemented as a set of pro-
cesses, which communicate through channels in a Communicating
Sequential Processes (CSP) [10, 15] style, using the core.async li-
brary [2]. The general architecture is illustrated in Figure 3.

OSC messages are sent as UDP messages from the TouchOSC
device to an OSC server running inside the JVM. The OSC listener
is informed of OSC messages coming in. The listener takes the raw
OSC messages, such as

{:path "/1/toggle8", :host "127.0.0.1", :args (1)}

JVM

OSC server

OSC listener

Instrument state
loop

Composer loop

Overtone loop

SuperCollider

Figure 3. Overview of the COMPOSER system architecture. The
dotted arrows are sliding buffers which will drop messages if they
are not consumed when a new message comes in.

and translates them to domain-specific events, such as
{:tonic-note :C#3}.

The domain events are put on a channel for the instrument state
loop to consume.

The instrument state loop keeps track of the current state of the
virtual instrument in the system. It consumes instrument updates
and updates the instrument states, emitting new states on the in-
strument state channel. This channel in turn is broadcast onto two
other channels which feed back into the OSC listener and the com-
poser loop. The OSC listener feeds the instrument state back to the
TouchOSC interface over UDP as OSC messages, to ensure that
the performers view of the instrument state corresponds to the ac-
tual state.

The composer loop consumes instrument states, such as
{:tonic-note :C#3, :scale :major-scale, :cadence :perfect}

and constructs a logic program that is evaulated using core.logic,
to construct a stream of candidate melodies. A random melody is
selected and emitted onto the channel feeding into the Overtone
loop. The Overtone loop keeps track of which melody to play in
the next iteration, and informs Overtone as to what to play and in
what tempo. Overtone in turn co-ordinates the melody and synths
with SuperCollider.

Much of the inter-process communication described above
could have been achieved using direct process communication
rather than channels. Channels were chosen for two reasons: (1)
to decouple the processes, allowing for cleaner interfaces between
components of the system; and (2), to control the stream instruc-
tions coming in from the user of the system. As demonstrated in the
Experiments section, generating a large selection of melodies can
be very time consuming, and the goal is for the experience from
the user’s perspective to be as responsive as possible. If it takes
more than a few seconds for a new composition to be generated
and played, the instrument will not be suitable as an interactive
performance tool.

Logic programming

Logic programming

C C] D D] E F F] G G] A A] B C
1 0 1 0 1 1 0 1 0 1 0 1 1
C – D – E F – G – A – B C

Figure 1. Generating C-major from the chromatic scale starting in
C, using the binary sequence representing the major scale.

cC1 , . . . , c
C
12 = C,C], ..., B, C. The binary sequence for the major

scale is 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1. Taken together, we can gen-
erate the C-major scale as C,D,E, F,G,A,B,C, as illustrated in
Figure 1.

Given two notes n and m, the two notes are said to have
an interval of a semitone between them if they are adjacent on
the chromatic scale. For example, D] is a semitone away from
D and E. If it is assumed that the semitonal relation between
notes is given, the relation between a tonic note, the scale as a
binary representation, and the notes in the scale can be defined.
The definition can be done recursively over the binary sequence
defining the scale, as demonstrated here1:

(defne scaleo [tonic-not scale notes]

([note [1 . scale-rest] [note . ()]])

([note [1 . scale-rest] [note . notes-rest]]

(fresh [next-note]

(semitone note next-note)

(scaleo next-note scale-rest notes-rest)))

([note [0 . scale-rest] notes]

(fresh [next-note]

(semitone note next-note)

(scaleo next-note scale-rest notes))))

With this rule, it is possible for us to write a logic program to
generate C-major.

(run* [notes]

(scaleo :C3 major-scale notes)

(counto notes 8))

;; => ([:C3 :D3 :E3 :F3 :G3 :A3 :B3 :C4])

As there is no orientation on our computation, it is also possible for
us to go the other way, and re-create the binary pattern of a scale
given a concrete instance of a scale

(run* [tonic-note pattern]

(scaleo tonic-note pattern

[:C3 :D3 :E3 :F3 :G3 :A3 :B3 :C4]))

;; => ([:C3 (1 0 1 0 1 1 0 1 0 1 0 1 1 . _0)])

As a melody in COMPOSER is just a permutation of a scale, with
the added restriction that the first and the last note must be the first
and last note of the scale, we can start generating melodies that
conform to the scale rule.

(run 3 [m1 m2 m3 m4 m5 m6 m7 m8]

(fresh [n1 n2 n3 n4 n5 n6 n7 n8]

(scaleo :C3 major-scale

[n1 n2 n3 n4 n5 n6 n7 n8])

(permuteo [m1 m2 m3 m4 m5 m6 m7 m8]

[n1 n2 n3 n4 n5 n6 n7 n8])

(== m1 :C3)

(== m8 :C4)))

;; => ([:C3 :D3 :E3 :F3 :G3 :A3 :B3 :C4]

;; [:C3 :E3 :D3 :F3 :G3 :A3 :B3 :C4]

;; [:C3 :F3 :D3 :E3 :G3 :A3 :B3 :C4])

1 A few basic macros and functions from core.logic are used in the code
examples presented. defne defines a goal function using pattern matching;
run* returns all solutions to a system, possibly never halting; run returns
no more than a given number of solutions to a system; fresh introduces
a new unbound logic variable. For a more detailed overview of core.logic
constructs, please see the core.logic homepage [3].

Adding cadence to the generated melodies can be achieved by
adding further restrictions in the logic program. For example, if
we want to restrict the generated melodies to those having plagal
cadence, we simple enforce that the second to last note of the
melody has to be the fourth note in the scale.

(run 3 [m1 m2 m3 m4 m5 m6 m7 m8]

(fresh [n1 n2 n3 n4 n5 n6 n7 n8]

(scaleo :C3 major-scale

[n1 n2 n3 n4 n5 n6 n7 n8])

(permuteo [m1 m2 m3 m4 m5 m6 m7 m8]

[n1 n2 n3 n4 n5 n6 n7 n8])

(== m1 :C3)

(== m8 :C4)

(== m7 n4)))

;; => ([:C3 :G3 :A3 :B3 :D3 :E3 :F3 :C4]

;; [:C3 :A3 :G3 :B3 :D3 :E3 :F3 :C4]

;; [:C3 :B3 :G3 :A3 :D3 :E3 :F3 :C4])

Generating random compositions can now be achieved by defin-
ing a logic program similar to the one above, based on the input pa-
rameters from the OSC interface. If a similar system was to be used
in a live coding scenario, new rules can easily be added to the set
of constrains to guide COMPOSER towards melodies with desired
characteristic.

3.2 The OSC interface
Much of the previous work on live programming and musical
performance in Clojure has been focused around changing the
program that generates the music live in Clojure. While this is
certainly possible in COMPOSER, the focus of this work has been
on building an enjoyable visual interface on top of the rule-engine
to allow non-programmers to guide the generation of melodies
by adding and changing the rules discussed in the previous sub-
section. Furthermore, we wanted an interface that was easy to pick
up by novices, both to programming and music theory, to allow
them to play around with the rules of music, to learn what influence
the different rules have on the generated pieces. The objective
was therefore to design an interface that was easy to master, yet
expressive enough to control the note, scale and cadence of the
melodies.

To allow COMPOSER to have a great level of flexibility and
extensibility, the Open Sound Control (OSC) protocol was selected
as the interface to the instrument. The OSC protocol is designed
for the communication of gestures, parameters and note sequences
between digital instruments. It has previously been used in live-
programming research [9, 18] and is an industry-standard protocol
often used as a replacement for MIDI when greater control is
needed.

It was decided to use TouchOSC as the OSC client for the
interface. TouchOSC is an app running on either an Android or
an iOS device, presenting simple buttons and sliders for the user to
interact with. Using a custom editor, it is possible to build controls
for novel instruments and synthesisers. The interface is transmitted
to the app over WiFi. When the TouchOSC app is running, it will
send OSC messages over UDP to a listening process.

After several iterations, the interface presented in Figure 2a was
chosen for controlling the rules concerning tonic note, scale and
cadence. The buttons in the top half if the interface are layed out
in a layout similar to that of a piano, to present the user with an
interface that will be familiar to anyone that has ever played around
with a piano or a keyboard. These buttons control the tonic-note
of the melodies being generated. Tapping a key on the piano will
change the current tonic note of the melodies being generated. If a
key that is already chosen is tapped again, the selection is removed,
and the generated pieces are no longer restricted to any tonic note.

Logic programming

C C] D D] E F F] G G] A A] B C
1 0 1 0 1 1 0 1 0 1 0 1 1
C – D – E F – G – A – B C

Figure 1. Generating C-major from the chromatic scale starting in
C, using the binary sequence representing the major scale.

cC1 , . . . , c
C
12 = C,C], ..., B, C. The binary sequence for the major

scale is 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1. Taken together, we can gen-
erate the C-major scale as C,D,E, F,G,A,B,C, as illustrated in
Figure 1.

Given two notes n and m, the two notes are said to have
an interval of a semitone between them if they are adjacent on
the chromatic scale. For example, D] is a semitone away from
D and E. If it is assumed that the semitonal relation between
notes is given, the relation between a tonic note, the scale as a
binary representation, and the notes in the scale can be defined.
The definition can be done recursively over the binary sequence
defining the scale, as demonstrated here1:

(defne scaleo [tonic-not scale notes]

([note [1 . scale-rest] [note . ()]])

([note [1 . scale-rest] [note . notes-rest]]

(fresh [next-note]

(semitone note next-note)

(scaleo next-note scale-rest notes-rest)))

([note [0 . scale-rest] notes]

(fresh [next-note]

(semitone note next-note)

(scaleo next-note scale-rest notes))))

With this rule, it is possible for us to write a logic program to
generate C-major.

(run* [notes]

(scaleo :C3 major-scale notes)

(counto notes 8))

;; => ([:C3 :D3 :E3 :F3 :G3 :A3 :B3 :C4])

As there is no orientation on our computation, it is also possible for
us to go the other way, and re-create the binary pattern of a scale
given a concrete instance of a scale

(run* [tonic-note pattern]

(scaleo tonic-note pattern

[:C3 :D3 :E3 :F3 :G3 :A3 :B3 :C4]))

;; => ([:C3 (1 0 1 0 1 1 0 1 0 1 0 1 1 . _0)])

As a melody in COMPOSER is just a permutation of a scale, with
the added restriction that the first and the last note must be the first
and last note of the scale, we can start generating melodies that
conform to the scale rule.

(run 3 [m1 m2 m3 m4 m5 m6 m7 m8]

(fresh [n1 n2 n3 n4 n5 n6 n7 n8]

(scaleo :C3 major-scale

[n1 n2 n3 n4 n5 n6 n7 n8])

(permuteo [m1 m2 m3 m4 m5 m6 m7 m8]

[n1 n2 n3 n4 n5 n6 n7 n8])

(== m1 :C3)

(== m8 :C4)))

;; => ([:C3 :D3 :E3 :F3 :G3 :A3 :B3 :C4]

;; [:C3 :E3 :D3 :F3 :G3 :A3 :B3 :C4]

;; [:C3 :F3 :D3 :E3 :G3 :A3 :B3 :C4])

1 A few basic macros and functions from core.logic are used in the code
examples presented. defne defines a goal function using pattern matching;
run* returns all solutions to a system, possibly never halting; run returns
no more than a given number of solutions to a system; fresh introduces
a new unbound logic variable. For a more detailed overview of core.logic
constructs, please see the core.logic homepage [3].

Adding cadence to the generated melodies can be achieved by
adding further restrictions in the logic program. For example, if
we want to restrict the generated melodies to those having plagal
cadence, we simple enforce that the second to last note of the
melody has to be the fourth note in the scale.

(run 3 [m1 m2 m3 m4 m5 m6 m7 m8]

(fresh [n1 n2 n3 n4 n5 n6 n7 n8]

(scaleo :C3 major-scale

[n1 n2 n3 n4 n5 n6 n7 n8])

(permuteo [m1 m2 m3 m4 m5 m6 m7 m8]

[n1 n2 n3 n4 n5 n6 n7 n8])

(== m1 :C3)

(== m8 :C4)

(== m7 n4)))

;; => ([:C3 :G3 :A3 :B3 :D3 :E3 :F3 :C4]

;; [:C3 :A3 :G3 :B3 :D3 :E3 :F3 :C4]

;; [:C3 :B3 :G3 :A3 :D3 :E3 :F3 :C4])

Generating random compositions can now be achieved by defin-
ing a logic program similar to the one above, based on the input pa-
rameters from the OSC interface. If a similar system was to be used
in a live coding scenario, new rules can easily be added to the set
of constrains to guide COMPOSER towards melodies with desired
characteristic.

3.2 The OSC interface
Much of the previous work on live programming and musical
performance in Clojure has been focused around changing the
program that generates the music live in Clojure. While this is
certainly possible in COMPOSER, the focus of this work has been
on building an enjoyable visual interface on top of the rule-engine
to allow non-programmers to guide the generation of melodies
by adding and changing the rules discussed in the previous sub-
section. Furthermore, we wanted an interface that was easy to pick
up by novices, both to programming and music theory, to allow
them to play around with the rules of music, to learn what influence
the different rules have on the generated pieces. The objective
was therefore to design an interface that was easy to master, yet
expressive enough to control the note, scale and cadence of the
melodies.

To allow COMPOSER to have a great level of flexibility and
extensibility, the Open Sound Control (OSC) protocol was selected
as the interface to the instrument. The OSC protocol is designed
for the communication of gestures, parameters and note sequences
between digital instruments. It has previously been used in live-
programming research [9, 18] and is an industry-standard protocol
often used as a replacement for MIDI when greater control is
needed.

It was decided to use TouchOSC as the OSC client for the
interface. TouchOSC is an app running on either an Android or
an iOS device, presenting simple buttons and sliders for the user to
interact with. Using a custom editor, it is possible to build controls
for novel instruments and synthesisers. The interface is transmitted
to the app over WiFi. When the TouchOSC app is running, it will
send OSC messages over UDP to a listening process.

After several iterations, the interface presented in Figure 2a was
chosen for controlling the rules concerning tonic note, scale and
cadence. The buttons in the top half if the interface are layed out
in a layout similar to that of a piano, to present the user with an
interface that will be familiar to anyone that has ever played around
with a piano or a keyboard. These buttons control the tonic-note
of the melodies being generated. Tapping a key on the piano will
change the current tonic note of the melodies being generated. If a
key that is already chosen is tapped again, the selection is removed,
and the generated pieces are no longer restricted to any tonic note.

C C] D D] E F F] G G] A A] B C
1 0 1 0 1 1 0 1 0 1 0 1 1
C – D – E F – G – A – B C

Figure 1. Generating C-major from the chromatic scale starting in
C, using the binary sequence representing the major scale.

cC1 , . . . , c
C
12 = C,C], ..., B, C. The binary sequence for the major

scale is 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1. Taken together, we can gen-
erate the C-major scale as C,D,E, F,G,A,B,C, as illustrated in
Figure 1.

Given two notes n and m, the two notes are said to have
an interval of a semitone between them if they are adjacent on
the chromatic scale. For example, D] is a semitone away from
D and E. If it is assumed that the semitonal relation between
notes is given, the relation between a tonic note, the scale as a
binary representation, and the notes in the scale can be defined.
The definition can be done recursively over the binary sequence
defining the scale, as demonstrated here1:

(defne scaleo [tonic-not scale notes]

([note [1 . scale-rest] [note . ()]])

([note [1 . scale-rest] [note . notes-rest]]

(fresh [next-note]

(semitone note next-note)

(scaleo next-note scale-rest notes-rest)))

([note [0 . scale-rest] notes]

(fresh [next-note]

(semitone note next-note)

(scaleo next-note scale-rest notes))))

With this rule, it is possible for us to write a logic program to
generate C-major.

(run* [notes]

(scaleo :C3 major-scale notes)

(counto notes 8))

;; => ([:C3 :D3 :E3 :F3 :G3 :A3 :B3 :C4])

As there is no orientation on our computation, it is also possible for
us to go the other way, and re-create the binary pattern of a scale
given a concrete instance of a scale

(run* [tonic-note pattern]

(scaleo tonic-note pattern

[:C3 :D3 :E3 :F3 :G3 :A3 :B3 :C4]))

;; => ([:C3 (1 0 1 0 1 1 0 1 0 1 0 1 1 . _0)])

As a melody in COMPOSER is just a permutation of a scale, with
the added restriction that the first and the last note must be the first
and last note of the scale, we can start generating melodies that
conform to the scale rule.

(run 3 [m1 m2 m3 m4 m5 m6 m7 m8]

(fresh [n1 n2 n3 n4 n5 n6 n7 n8]

(scaleo :C3 major-scale

[n1 n2 n3 n4 n5 n6 n7 n8])

(permuteo [m1 m2 m3 m4 m5 m6 m7 m8]

[n1 n2 n3 n4 n5 n6 n7 n8])

(== m1 :C3)

(== m8 :C4)))

;; => ([:C3 :D3 :E3 :F3 :G3 :A3 :B3 :C4]

;; [:C3 :E3 :D3 :F3 :G3 :A3 :B3 :C4]

;; [:C3 :F3 :D3 :E3 :G3 :A3 :B3 :C4])

1 A few basic macros and functions from core.logic are used in the code
examples presented. defne defines a goal function using pattern matching;
run* returns all solutions to a system, possibly never halting; run returns
no more than a given number of solutions to a system; fresh introduces
a new unbound logic variable. For a more detailed overview of core.logic
constructs, please see the core.logic homepage [3].

Adding cadence to the generated melodies can be achieved by
adding further restrictions in the logic program. For example, if
we want to restrict the generated melodies to those having plagal
cadence, we simple enforce that the second to last note of the
melody has to be the fourth note in the scale.

(run 3 [m1 m2 m3 m4 m5 m6 m7 m8]

(fresh [n1 n2 n3 n4 n5 n6 n7 n8]

(scaleo :C3 major-scale

[n1 n2 n3 n4 n5 n6 n7 n8])

(permuteo [m1 m2 m3 m4 m5 m6 m7 m8]

[n1 n2 n3 n4 n5 n6 n7 n8])

(== m1 :C3)

(== m8 :C4)

(== m7 n4)))

;; => ([:C3 :G3 :A3 :B3 :D3 :E3 :F3 :C4]

;; [:C3 :A3 :G3 :B3 :D3 :E3 :F3 :C4]

;; [:C3 :B3 :G3 :A3 :D3 :E3 :F3 :C4])

Generating random compositions can now be achieved by defin-
ing a logic program similar to the one above, based on the input pa-
rameters from the OSC interface. If a similar system was to be used
in a live coding scenario, new rules can easily be added to the set
of constrains to guide COMPOSER towards melodies with desired
characteristic.

3.2 The OSC interface
Much of the previous work on live programming and musical
performance in Clojure has been focused around changing the
program that generates the music live in Clojure. While this is
certainly possible in COMPOSER, the focus of this work has been
on building an enjoyable visual interface on top of the rule-engine
to allow non-programmers to guide the generation of melodies
by adding and changing the rules discussed in the previous sub-
section. Furthermore, we wanted an interface that was easy to pick
up by novices, both to programming and music theory, to allow
them to play around with the rules of music, to learn what influence
the different rules have on the generated pieces. The objective
was therefore to design an interface that was easy to master, yet
expressive enough to control the note, scale and cadence of the
melodies.

To allow COMPOSER to have a great level of flexibility and
extensibility, the Open Sound Control (OSC) protocol was selected
as the interface to the instrument. The OSC protocol is designed
for the communication of gestures, parameters and note sequences
between digital instruments. It has previously been used in live-
programming research [9, 18] and is an industry-standard protocol
often used as a replacement for MIDI when greater control is
needed.

It was decided to use TouchOSC as the OSC client for the
interface. TouchOSC is an app running on either an Android or
an iOS device, presenting simple buttons and sliders for the user to
interact with. Using a custom editor, it is possible to build controls
for novel instruments and synthesisers. The interface is transmitted
to the app over WiFi. When the TouchOSC app is running, it will
send OSC messages over UDP to a listening process.

After several iterations, the interface presented in Figure 2a was
chosen for controlling the rules concerning tonic note, scale and
cadence. The buttons in the top half if the interface are layed out
in a layout similar to that of a piano, to present the user with an
interface that will be familiar to anyone that has ever played around
with a piano or a keyboard. These buttons control the tonic-note
of the melodies being generated. Tapping a key on the piano will
change the current tonic note of the melodies being generated. If a
key that is already chosen is tapped again, the selection is removed,
and the generated pieces are no longer restricted to any tonic note.

Logic programming

C C] D D] E F F] G G] A A] B C
1 0 1 0 1 1 0 1 0 1 0 1 1
C – D – E F – G – A – B C

Figure 1. Generating C-major from the chromatic scale starting in
C, using the binary sequence representing the major scale.

cC1 , . . . , c
C
12 = C,C], ..., B, C. The binary sequence for the major

scale is 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1. Taken together, we can gen-
erate the C-major scale as C,D,E, F,G,A,B,C, as illustrated in
Figure 1.

Given two notes n and m, the two notes are said to have
an interval of a semitone between them if they are adjacent on
the chromatic scale. For example, D] is a semitone away from
D and E. If it is assumed that the semitonal relation between
notes is given, the relation between a tonic note, the scale as a
binary representation, and the notes in the scale can be defined.
The definition can be done recursively over the binary sequence
defining the scale, as demonstrated here1:

(defne scaleo [tonic-not scale notes]

([note [1 . scale-rest] [note . ()]])

([note [1 . scale-rest] [note . notes-rest]]

(fresh [next-note]

(semitone note next-note)

(scaleo next-note scale-rest notes-rest)))

([note [0 . scale-rest] notes]

(fresh [next-note]

(semitone note next-note)

(scaleo next-note scale-rest notes))))

With this rule, it is possible for us to write a logic program to
generate C-major.

(run* [notes]

(scaleo :C3 major-scale notes)

(counto notes 8))

;; => ([:C3 :D3 :E3 :F3 :G3 :A3 :B3 :C4])

As there is no orientation on our computation, it is also possible for
us to go the other way, and re-create the binary pattern of a scale
given a concrete instance of a scale

(run* [tonic-note pattern]

(scaleo tonic-note pattern

[:C3 :D3 :E3 :F3 :G3 :A3 :B3 :C4]))

;; => ([:C3 (1 0 1 0 1 1 0 1 0 1 0 1 1 . _0)])

As a melody in COMPOSER is just a permutation of a scale, with
the added restriction that the first and the last note must be the first
and last note of the scale, we can start generating melodies that
conform to the scale rule.

(run 3 [m1 m2 m3 m4 m5 m6 m7 m8]

(fresh [n1 n2 n3 n4 n5 n6 n7 n8]

(scaleo :C3 major-scale

[n1 n2 n3 n4 n5 n6 n7 n8])

(permuteo [m1 m2 m3 m4 m5 m6 m7 m8]

[n1 n2 n3 n4 n5 n6 n7 n8])

(== m1 :C3)

(== m8 :C4)))

;; => ([:C3 :D3 :E3 :F3 :G3 :A3 :B3 :C4]

;; [:C3 :E3 :D3 :F3 :G3 :A3 :B3 :C4]

;; [:C3 :F3 :D3 :E3 :G3 :A3 :B3 :C4])

1 A few basic macros and functions from core.logic are used in the code
examples presented. defne defines a goal function using pattern matching;
run* returns all solutions to a system, possibly never halting; run returns
no more than a given number of solutions to a system; fresh introduces
a new unbound logic variable. For a more detailed overview of core.logic
constructs, please see the core.logic homepage [3].

Adding cadence to the generated melodies can be achieved by
adding further restrictions in the logic program. For example, if
we want to restrict the generated melodies to those having plagal
cadence, we simple enforce that the second to last note of the
melody has to be the fourth note in the scale.

(run 3 [m1 m2 m3 m4 m5 m6 m7 m8]

(fresh [n1 n2 n3 n4 n5 n6 n7 n8]

(scaleo :C3 major-scale

[n1 n2 n3 n4 n5 n6 n7 n8])

(permuteo [m1 m2 m3 m4 m5 m6 m7 m8]

[n1 n2 n3 n4 n5 n6 n7 n8])

(== m1 :C3)

(== m8 :C4)

(== m7 n4)))

;; => ([:C3 :G3 :A3 :B3 :D3 :E3 :F3 :C4]

;; [:C3 :A3 :G3 :B3 :D3 :E3 :F3 :C4]

;; [:C3 :B3 :G3 :A3 :D3 :E3 :F3 :C4])

Generating random compositions can now be achieved by defin-
ing a logic program similar to the one above, based on the input pa-
rameters from the OSC interface. If a similar system was to be used
in a live coding scenario, new rules can easily be added to the set
of constrains to guide COMPOSER towards melodies with desired
characteristic.

3.2 The OSC interface
Much of the previous work on live programming and musical
performance in Clojure has been focused around changing the
program that generates the music live in Clojure. While this is
certainly possible in COMPOSER, the focus of this work has been
on building an enjoyable visual interface on top of the rule-engine
to allow non-programmers to guide the generation of melodies
by adding and changing the rules discussed in the previous sub-
section. Furthermore, we wanted an interface that was easy to pick
up by novices, both to programming and music theory, to allow
them to play around with the rules of music, to learn what influence
the different rules have on the generated pieces. The objective
was therefore to design an interface that was easy to master, yet
expressive enough to control the note, scale and cadence of the
melodies.

To allow COMPOSER to have a great level of flexibility and
extensibility, the Open Sound Control (OSC) protocol was selected
as the interface to the instrument. The OSC protocol is designed
for the communication of gestures, parameters and note sequences
between digital instruments. It has previously been used in live-
programming research [9, 18] and is an industry-standard protocol
often used as a replacement for MIDI when greater control is
needed.

It was decided to use TouchOSC as the OSC client for the
interface. TouchOSC is an app running on either an Android or
an iOS device, presenting simple buttons and sliders for the user to
interact with. Using a custom editor, it is possible to build controls
for novel instruments and synthesisers. The interface is transmitted
to the app over WiFi. When the TouchOSC app is running, it will
send OSC messages over UDP to a listening process.

After several iterations, the interface presented in Figure 2a was
chosen for controlling the rules concerning tonic note, scale and
cadence. The buttons in the top half if the interface are layed out
in a layout similar to that of a piano, to present the user with an
interface that will be familiar to anyone that has ever played around
with a piano or a keyboard. These buttons control the tonic-note
of the melodies being generated. Tapping a key on the piano will
change the current tonic note of the melodies being generated. If a
key that is already chosen is tapped again, the selection is removed,
and the generated pieces are no longer restricted to any tonic note.

C C] D D] E F F] G G] A A] B C
1 0 1 0 1 1 0 1 0 1 0 1 1
C – D – E F – G – A – B C

Figure 1. Generating C-major from the chromatic scale starting in
C, using the binary sequence representing the major scale.

cC1 , . . . , c
C
12 = C,C], ..., B, C. The binary sequence for the major

scale is 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1. Taken together, we can gen-
erate the C-major scale as C,D,E, F,G,A,B,C, as illustrated in
Figure 1.

Given two notes n and m, the two notes are said to have
an interval of a semitone between them if they are adjacent on
the chromatic scale. For example, D] is a semitone away from
D and E. If it is assumed that the semitonal relation between
notes is given, the relation between a tonic note, the scale as a
binary representation, and the notes in the scale can be defined.
The definition can be done recursively over the binary sequence
defining the scale, as demonstrated here1:

(defne scaleo [tonic-not scale notes]

([note [1 . scale-rest] [note . ()]])

([note [1 . scale-rest] [note . notes-rest]]

(fresh [next-note]

(semitone note next-note)

(scaleo next-note scale-rest notes-rest)))

([note [0 . scale-rest] notes]

(fresh [next-note]

(semitone note next-note)

(scaleo next-note scale-rest notes))))

With this rule, it is possible for us to write a logic program to
generate C-major.

(run* [notes]

(scaleo :C3 major-scale notes)

(counto notes 8))

;; => ([:C3 :D3 :E3 :F3 :G3 :A3 :B3 :C4])

As there is no orientation on our computation, it is also possible for
us to go the other way, and re-create the binary pattern of a scale
given a concrete instance of a scale

(run* [tonic-note pattern]

(scaleo tonic-note pattern

[:C3 :D3 :E3 :F3 :G3 :A3 :B3 :C4]))

;; => ([:C3 (1 0 1 0 1 1 0 1 0 1 0 1 1 . _0)])

As a melody in COMPOSER is just a permutation of a scale, with
the added restriction that the first and the last note must be the first
and last note of the scale, we can start generating melodies that
conform to the scale rule.

(run 3 [m1 m2 m3 m4 m5 m6 m7 m8]

(fresh [n1 n2 n3 n4 n5 n6 n7 n8]

(scaleo :C3 major-scale

[n1 n2 n3 n4 n5 n6 n7 n8])

(permuteo [m1 m2 m3 m4 m5 m6 m7 m8]

[n1 n2 n3 n4 n5 n6 n7 n8])

(== m1 :C3)

(== m8 :C4)))

;; => ([:C3 :D3 :E3 :F3 :G3 :A3 :B3 :C4]

;; [:C3 :E3 :D3 :F3 :G3 :A3 :B3 :C4]

;; [:C3 :F3 :D3 :E3 :G3 :A3 :B3 :C4])

1 A few basic macros and functions from core.logic are used in the code
examples presented. defne defines a goal function using pattern matching;
run* returns all solutions to a system, possibly never halting; run returns
no more than a given number of solutions to a system; fresh introduces
a new unbound logic variable. For a more detailed overview of core.logic
constructs, please see the core.logic homepage [3].

Adding cadence to the generated melodies can be achieved by
adding further restrictions in the logic program. For example, if
we want to restrict the generated melodies to those having plagal
cadence, we simple enforce that the second to last note of the
melody has to be the fourth note in the scale.

(run 3 [m1 m2 m3 m4 m5 m6 m7 m8]

(fresh [n1 n2 n3 n4 n5 n6 n7 n8]

(scaleo :C3 major-scale

[n1 n2 n3 n4 n5 n6 n7 n8])

(permuteo [m1 m2 m3 m4 m5 m6 m7 m8]

[n1 n2 n3 n4 n5 n6 n7 n8])

(== m1 :C3)

(== m8 :C4)

(== m7 n4)))

;; => ([:C3 :G3 :A3 :B3 :D3 :E3 :F3 :C4]

;; [:C3 :A3 :G3 :B3 :D3 :E3 :F3 :C4]

;; [:C3 :B3 :G3 :A3 :D3 :E3 :F3 :C4])

Generating random compositions can now be achieved by defin-
ing a logic program similar to the one above, based on the input pa-
rameters from the OSC interface. If a similar system was to be used
in a live coding scenario, new rules can easily be added to the set
of constrains to guide COMPOSER towards melodies with desired
characteristic.

3.2 The OSC interface
Much of the previous work on live programming and musical
performance in Clojure has been focused around changing the
program that generates the music live in Clojure. While this is
certainly possible in COMPOSER, the focus of this work has been
on building an enjoyable visual interface on top of the rule-engine
to allow non-programmers to guide the generation of melodies
by adding and changing the rules discussed in the previous sub-
section. Furthermore, we wanted an interface that was easy to pick
up by novices, both to programming and music theory, to allow
them to play around with the rules of music, to learn what influence
the different rules have on the generated pieces. The objective
was therefore to design an interface that was easy to master, yet
expressive enough to control the note, scale and cadence of the
melodies.

To allow COMPOSER to have a great level of flexibility and
extensibility, the Open Sound Control (OSC) protocol was selected
as the interface to the instrument. The OSC protocol is designed
for the communication of gestures, parameters and note sequences
between digital instruments. It has previously been used in live-
programming research [9, 18] and is an industry-standard protocol
often used as a replacement for MIDI when greater control is
needed.

It was decided to use TouchOSC as the OSC client for the
interface. TouchOSC is an app running on either an Android or
an iOS device, presenting simple buttons and sliders for the user to
interact with. Using a custom editor, it is possible to build controls
for novel instruments and synthesisers. The interface is transmitted
to the app over WiFi. When the TouchOSC app is running, it will
send OSC messages over UDP to a listening process.

After several iterations, the interface presented in Figure 2a was
chosen for controlling the rules concerning tonic note, scale and
cadence. The buttons in the top half if the interface are layed out
in a layout similar to that of a piano, to present the user with an
interface that will be familiar to anyone that has ever played around
with a piano or a keyboard. These buttons control the tonic-note
of the melodies being generated. Tapping a key on the piano will
change the current tonic note of the melodies being generated. If a
key that is already chosen is tapped again, the selection is removed,
and the generated pieces are no longer restricted to any tonic note.

C C] D D] E F F] G G] A A] B C
1 0 1 0 1 1 0 1 0 1 0 1 1
C – D – E F – G – A – B C

Figure 1. Generating C-major from the chromatic scale starting in
C, using the binary sequence representing the major scale.

cC1 , . . . , c
C
12 = C,C], ..., B, C. The binary sequence for the major

scale is 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1. Taken together, we can gen-
erate the C-major scale as C,D,E, F,G,A,B,C, as illustrated in
Figure 1.

Given two notes n and m, the two notes are said to have
an interval of a semitone between them if they are adjacent on
the chromatic scale. For example, D] is a semitone away from
D and E. If it is assumed that the semitonal relation between
notes is given, the relation between a tonic note, the scale as a
binary representation, and the notes in the scale can be defined.
The definition can be done recursively over the binary sequence
defining the scale, as demonstrated here1:

(defne scaleo [tonic-not scale notes]

([note [1 . scale-rest] [note . ()]])

([note [1 . scale-rest] [note . notes-rest]]

(fresh [next-note]

(semitone note next-note)

(scaleo next-note scale-rest notes-rest)))

([note [0 . scale-rest] notes]

(fresh [next-note]

(semitone note next-note)

(scaleo next-note scale-rest notes))))

With this rule, it is possible for us to write a logic program to
generate C-major.

(run* [notes]

(scaleo :C3 major-scale notes)

(counto notes 8))

;; => ([:C3 :D3 :E3 :F3 :G3 :A3 :B3 :C4])

As there is no orientation on our computation, it is also possible for
us to go the other way, and re-create the binary pattern of a scale
given a concrete instance of a scale

(run* [tonic-note pattern]

(scaleo tonic-note pattern

[:C3 :D3 :E3 :F3 :G3 :A3 :B3 :C4]))

;; => ([:C3 (1 0 1 0 1 1 0 1 0 1 0 1 1 . _0)])

As a melody in COMPOSER is just a permutation of a scale, with
the added restriction that the first and the last note must be the first
and last note of the scale, we can start generating melodies that
conform to the scale rule.

(run 3 [m1 m2 m3 m4 m5 m6 m7 m8]

(fresh [n1 n2 n3 n4 n5 n6 n7 n8]

(scaleo :C3 major-scale

[n1 n2 n3 n4 n5 n6 n7 n8])

(permuteo [m1 m2 m3 m4 m5 m6 m7 m8]

[n1 n2 n3 n4 n5 n6 n7 n8])

(== m1 :C3)

(== m8 :C4)))

;; => ([:C3 :D3 :E3 :F3 :G3 :A3 :B3 :C4]

;; [:C3 :E3 :D3 :F3 :G3 :A3 :B3 :C4]

;; [:C3 :F3 :D3 :E3 :G3 :A3 :B3 :C4])

1 A few basic macros and functions from core.logic are used in the code
examples presented. defne defines a goal function using pattern matching;
run* returns all solutions to a system, possibly never halting; run returns
no more than a given number of solutions to a system; fresh introduces
a new unbound logic variable. For a more detailed overview of core.logic
constructs, please see the core.logic homepage [3].

Adding cadence to the generated melodies can be achieved by
adding further restrictions in the logic program. For example, if
we want to restrict the generated melodies to those having plagal
cadence, we simple enforce that the second to last note of the
melody has to be the fourth note in the scale.

(run 3 [m1 m2 m3 m4 m5 m6 m7 m8]

(fresh [n1 n2 n3 n4 n5 n6 n7 n8]

(scaleo :C3 major-scale

[n1 n2 n3 n4 n5 n6 n7 n8])

(permuteo [m1 m2 m3 m4 m5 m6 m7 m8]

[n1 n2 n3 n4 n5 n6 n7 n8])

(== m1 :C3)

(== m8 :C4)

(== m7 n4)))

;; => ([:C3 :G3 :A3 :B3 :D3 :E3 :F3 :C4]

;; [:C3 :A3 :G3 :B3 :D3 :E3 :F3 :C4]

;; [:C3 :B3 :G3 :A3 :D3 :E3 :F3 :C4])

Generating random compositions can now be achieved by defin-
ing a logic program similar to the one above, based on the input pa-
rameters from the OSC interface. If a similar system was to be used
in a live coding scenario, new rules can easily be added to the set
of constrains to guide COMPOSER towards melodies with desired
characteristic.

3.2 The OSC interface
Much of the previous work on live programming and musical
performance in Clojure has been focused around changing the
program that generates the music live in Clojure. While this is
certainly possible in COMPOSER, the focus of this work has been
on building an enjoyable visual interface on top of the rule-engine
to allow non-programmers to guide the generation of melodies
by adding and changing the rules discussed in the previous sub-
section. Furthermore, we wanted an interface that was easy to pick
up by novices, both to programming and music theory, to allow
them to play around with the rules of music, to learn what influence
the different rules have on the generated pieces. The objective
was therefore to design an interface that was easy to master, yet
expressive enough to control the note, scale and cadence of the
melodies.

To allow COMPOSER to have a great level of flexibility and
extensibility, the Open Sound Control (OSC) protocol was selected
as the interface to the instrument. The OSC protocol is designed
for the communication of gestures, parameters and note sequences
between digital instruments. It has previously been used in live-
programming research [9, 18] and is an industry-standard protocol
often used as a replacement for MIDI when greater control is
needed.

It was decided to use TouchOSC as the OSC client for the
interface. TouchOSC is an app running on either an Android or
an iOS device, presenting simple buttons and sliders for the user to
interact with. Using a custom editor, it is possible to build controls
for novel instruments and synthesisers. The interface is transmitted
to the app over WiFi. When the TouchOSC app is running, it will
send OSC messages over UDP to a listening process.

After several iterations, the interface presented in Figure 2a was
chosen for controlling the rules concerning tonic note, scale and
cadence. The buttons in the top half if the interface are layed out
in a layout similar to that of a piano, to present the user with an
interface that will be familiar to anyone that has ever played around
with a piano or a keyboard. These buttons control the tonic-note
of the melodies being generated. Tapping a key on the piano will
change the current tonic note of the melodies being generated. If a
key that is already chosen is tapped again, the selection is removed,
and the generated pieces are no longer restricted to any tonic note.

Logic programming
(ns composer.composer
 (:refer-clojure :exclude [==])
 (:require [clojure.core.async :refer [go >! <!]]
 [clojure.core.logic :refer :all]
 [clojure.core.logic.pldb :refer :all]))

(defn scale-from-tones [tone-types]
 (take 25
 (->> tone-types
 (map {:semitone [1]
 :tone [0 1]
 :minor-third [0 0 1]})
 flatten
 butlast
 (cons 1)
 cycle)))

(def major-scale
 (scale-from-tones
 [:tone :tone :semitone :tone :tone :tone :semitone]))
(def harmonic-minor-scale
 (scale-from-tones
 [:tone :semitone :tone :tone :semitone :minor-third :semitone]))
(def natural-minor-scale
 (scale-from-tones
 [:tone :semitone :tone :tone :semitone :tone :tone]))
(def locrian-mode
 (scale-from-tones
 [:semitone :tone :tone :semitone :tone :tone :tone]))
(def mixolydian-mode
 (scale-from-tones
 [:tone :tone :semitone :tone :tone :semitone :tone]))

(def scale-modes
 [[:major-scale major-scale]
 [:harmonic-minor-scale harmonic-minor-scale]
 [:natural-minor-scale natural-minor-scale]
 [:locrian-mode locrian-mode]
 [:mixolydian-mode mixolydian-mode]])

(db-rel semitone note-1 note-2)

(def keys-from-c
 [:C3 :C#3 :D3 :D#3 :E3 :F3 :F#3 :G3 :G#3 :A3 :A#3 :B3
 :C4 :C#4 :D4 :D#4 :E4 :F4 :F#4 :G4 :G#4 :A4 :A#4 :B4
 :C5])

(def semitone-facts
 (reduce
 (fn [db [note-1 note-2]]
 (db-fact db semitone note-1 note-2))
 empty-db
 (partition 2 1 keys-from-c)))

(defne scaleo [base-note scale notes]
 ([note [1 . scale-rest] [note . ()]])
 ([note [1 . scale-rest] [note . notes-rest]]
 (fresh [next-note]
 (semitone note next-note)
 (scaleo next-note scale-rest notes-rest)))
 ([note [0 . scale-rest] notes]
 (fresh [next-note]
 (semitone note next-note)
 (scaleo next-note scale-rest notes))))

(defn key-restriction
 [instrument-state s1]
 (if-let [key (:key instrument-state)]
 (all (== key s1))
 succeed))

(defn scale-restriction
 [instrument-state scale-type]
 (if (:scale instrument-state)
 (all (membero [(:scale instrument-state) scale-type] scale-modes))
 succeed))

(defn cadence-restriction
 [instrument-state m7 s2 s4 s5]
 (case (:cadence instrument-state)
 :perfect (all (== m7 s5))
 :plagal (all (== m7 s4))
 :just-nice (all (== m7 s2))
 nil succeed))

(defn- logic-program
 [instrument-state melody2]
 (fresh [melody
 m1 m2 m3 m4 m5 m6 m7 m8
 scale
 s1 s2 s3 s4 s5 s6 s7 s8
 base-note scale-type]
 (key-restriction instrument-state s1)
 (== melody [m1 m2 m3 m4 m5 m6 m7 m8])
 (== scale [s1 s2 s3 s4 s5 s6 s7 s8])
 (== m1 s1)
 (== m8 s8)
 (cadence-restriction instrument-state m7 s2 s4 s5)
 (== melody2 [m1 m2 m3 m4 m5 m6 m7 m1])
 (scale-restriction instrument-state scale-type)
 (scaleo base-note scale-type scale)
 (permuteo scale melody)))

(defn compositions
 [instrument-state & [n]]
 (with-db
 semitone-facts
 (if n
 (run n [melody2]
 (logic-program instrument-state melody2))
 (run* [melody2]
 (logic-program instrument-state melody2)))))

(defn- random-composition
 [instrument-state]
 (rand-nth
 (or (seq (compositions instrument-state 1024))
 [[]])))

;; Loop

(defn- same-melody-params?
 [instrument-state-1 instrument-state-2]
 (let [non-melody-keys [:speed :gaps]]
 (= (apply dissoc instrument-state-1 non-melody-keys)
 (apply dissoc instrument-state-2 non-melody-keys))))

(defn composer-loop
 "Listens for new instrument states on instrument-state-ch and emits a
 random melody to melody-ch. The loop terminates when
 instrument-state-ch closes.

 Changes to :speed or :gaps does not compose a new melody, but alters
 the timing of the existing."
 [instrument-state-ch melody-ch]
 (go
 (loop [prev-instrument-state nil
 prev-composition nil]
 (when-let [instrument-state (<! instrument-state-ch)]
 (let [gaps (for [i (range 8)] (get (:gaps instrument-state) i 0.5))
 speed (:speed instrument-state)
 new-melody (if (same-melody-params? prev-instrument-state
 instrument-state)
 (:melody prev-composition)
 (random-composition instrument-state))
 new-composition {:gaps gaps
 :speed speed
 :melody new-melody}]
 (>! melody-ch new-composition)
 (recur instrument-state
 new-composition))))))

The system

The system

Experiments

• Goal: a reactive system

• Experiment 1: What is the size of the
melody space and how long does it take to
enumerate it?

• Experiment 2: What is a reasonable bound
on the search space to achieve
responsiveness?

Experiment 1

No scale Major scale
Any tonic note C Any tonic note C
– pc – pc – pc – pc

Melody space 258 258 258 258 9, 360 1, 560 720 120
Execution time (ms) – – – – 4, 299 3, 852 294 278
Melodies/second – – – – 2, 177 404 2, 448 431

Table 1. Size of the melody space for different instrument configurations and the time it takes to enumerate that space in COMPOSER. There
are only 25 notes available to the engine, which accounts for the bound of 258. “pc” is short for “perfect cadence”.

1

10

100

1000

10000

100000

1 4 16 64 256 1024 4096 16384 65536

Execution time (ms)

Search space bound

Execution time for bounded melody space searches

No scale

+ + + + + + + + +
+

+

+

+
+

+

+
Major scale, any tonic note and any cadence

⇥ ⇥ ⇥ ⇥ ⇥ ⇥
⇥

⇥
⇥

⇥
⇥

⇥
⇥ ⇥ ⇥

⇥
Major scale, C and any cadence

⇤ ⇤ ⇤ ⇤
⇤

⇤
⇤

⇤
⇤

⇤ ⇤ ⇤ ⇤ ⇤ ⇤

⇤
Major scale, C and perfect cadence

2 2 2 2 2

2

2 2 2 2 2 2 2 2 2

2

Figure 4. Average execution time for enumerating size bound parts of melody space for different instrument configurations. Each point was
sampled ten times, and is presented with the standard deviation of those experiments.

of tools, assisted live composition available for novices with little
or no formal knowledge of the rules in tonal Western music. Fur-
thermore, to target novices, the interface to the COMPOSER system
was implemented using the TouchOSC interface on mobile devices.

CSP was utilised to allow for the rapid manipulation of the ab-
stract instrument used to control the search engine while still gen-
erating and playing new melodies in a timely manner. In general,
CSP techniques were demonstrated to be suitable for structuring
programs to be used in a live performance context where heavy
computation is needed to be performed in a manner that still feels
“live” to the performer and the audience.

The system described in this paper raises some interesting ques-
tions that can be tackled in future research. It was found that enu-
merating the entire melody space was intractable within appropiate
time when few restrictions were put on the melodies. This has the
unfortunate consequence that the same subset of the melody space
will be sampled from over and over again, as the core.logic search
algorithm will return the same melody sub-space when invoked
with a constant bound. An interesting area of research would be the
construction of a stochastic solution space strategy for miniKanren.
If this was available, only one composition would need to be gen-
erated by the core.logic engine when the instrument state changes.
Implementing such a strategy is non-trivial, as uniform sampling of
the solution space requires information about the entire rule system
at any given decision point of a search.

The COMPOSER system has been focused around tonal Western
style music. With small changes to the rules described and with a
new OSC interface, it would be possible to support other styles of
music. A system with rules from different cultures could be used
to not only teach students the rules of classical Western music, but
also music based on other rulesets. Unfortunately, this was outside
the scope of the present work.

Previous research has emphasised the need for tangible inter-
faces for manipulation virtual instruments in a live setting. This
research has focused on using TouchOSC as an interface that while
not being foreign to the intended end-user is still a virtual inter-
face. Utilising generic instrument tools such as the monome or a
DAW controller, or even customly designed and built physical in-
struments, would make the system more accessible and transparent
to performers and audience.

Finally, assesment of the utility of a system such as COMPOSER
should rely on extensive user testing. As the project is unfinanced
resources for conducting such experiments have not been available.
Future work should look into the utility by conducting a set of
qualitative and quantitative experiments.

The implementation of the COMPOSER system, including the
TouchOSC interface, is available on the projects GitHub repository
[7].

Experiment 2

1

10

100

1000

10000

100000

2 8 32 128 512 2048 8192 32768

Ex
ec

ut
io

n
tim

e
(m

s)

Search space bound

No scale
Major scale, any tonic note, any cadence
Major scale, C, any cadence
Major scale, C, perfect cadence

Conclusion

• Composer demonstrates it is possible to
build a responsive interactive system with
extremely small and succinct core

• The declarative nature of the core
implementation makes it possible to extend
the terminology to other types of music

Future work

• Proper sampling of search space

• Labeled interface

• Non-Western music

• User testing

