
Using Haskell as DSL for controlling 
immersive media experiences 

!

FARM 2014
2014-09-06



Outline
‣ What is LARP?
‣ What was The Monitor Celestra?
‣ Technological support systems
‣ Immersive sound
‣ Haskell: strengths and drawbacks
‣ Sound system in action



What is LARP?
‣ A collaborative storytelling game
‣ Plays in real time, in a joint physical area
‣ Players wear costumes, use props
‣ No spectators: to see is to participate
‣ All genres
‣ Geographic variations in style



Nordic LARP

‣ Nordic LARP style is characterized by eep 
immersion and player control

‣ Faithful and complete representation of game 
world highly valued

‣ “Railroading” and excessive rules control strongly 
discouraged



The Monitor Celestra

‣ Nordic LARP held in 3 repeated games, March 
2013.

‣ Played in the fictional setting of Battlestar Galactica
‣ The WW2 Destroyer Småland was rented and 

remodeled to give an immersive impression of a 
space ship interior





Immersion supported by 
technical aids

‣ Laser-cut computer control terminal fronts
‣ Laser-cut personal dogtags
‣ Replacing all existing signage
‣ Visual design
‣ Designed soundscapes



Soundscapes

‣ The ship was anchored in Gothenburg harbor: city 
sounds leaked in

‣ Full immersion was assisted by creating custom 
soundscapes on board



Sound System
‣ Custom Build Sound Distribution and synchronization system

‣ Built to withstand system failure

!

‣ Real Time mixing of parameterized ambience creating a dynamic 
soundtrack for the game

‣ Creates an ambient feeling of the ship and its state

‣ enables sound to travel through the ship with millisecond 
synchronization creating a feeling of localized sound



Sound System - Hardware

‣ One dedicated Raspberry Pie for each pair of speakers

‣ network attached

‣ real time monitoring



Architecture



Console 
Client / 

Controller

Physical 
Interface

Console 
Client / 

Controller

Physical 
Interface

Console 
Client / 

Controller

Physical 
Interface

C-EWD
Game Server

Sound Daemon

SoundServer

Game Mastering

Speakers

Wired Network

Redis

Console 
Client / 

Controller

Physical 
Interface

AMQP

Game Log

Game Visualization Game Control Game Archiving



Types work for us

‣ Declare datatypes to encode all structures
‣ Declare translation functions to dig deeper into the 

communication stack
‣ Use automatic JSON encoding and parsing



..SoundCommand. SoundSpec.

FilterSpec

.

DaemonSpec

.

DaemonCommand

.

AMQPDaemon



SoundCommand
‣ Commands that can be given to the sound 

specification system
‣ Define a sound scape
‣ Save / Restore from database
‣ Diagnostics
‣ Execute specific sound
‣ Trigger sound on events
‣ Chain commands — Monoid structure



SoundSpec
‣ Descriptions of Sound Scapes

‣ Play, Loop, Stop or Modify a Sound File
‣ Crossfade
‣ Pick Loudspeaker with indexing
‣ Pick Loudness & Left/Right balance
‣ Include a delay before command starts



FilterSpec

‣ Collection of regular expression rules to trigger 
actions on messages in AMQP queue

‣ Allows automatic reactions to player devices: “Load 
Torpedo” automatically creates torpedo loading 
noises



DaemonSpec

‣ Translates the Play/Loop/Fade/... commands in a 
SoundSpec into the primitives used for the lower 
level sound system:  
Play, Loop, Stop, Change



DaemonCommand

‣ Wrapper around DaemonSpec that creates JSON 
messages optimized for parsing by lower level 
sound system.



AMQPDaemon

‣ Wrapper to package a DaemonCommand in an 
AMQP message for delivery to lower level sound 
system



This is where the demo 
would have been…

‣ Discovered yesterday that the surrounding system 
doesn’t work with the MacOSX stock ruby1.8.

‣ Not able to show the system in action



Lessons Learned
‣ Several of our ambitions did not come through:

‣ Creative staff never wrote any code
‣ Overall system fragile to rebuilds outside exact 

controlled (version by version) layout
‣ Sporadic and untraced performance issues at 

launch: delays in sound reactions
‣ Communication issues between creative and tech 

groups  
“You need Stereo sound to play it stereo?” 
— discovered after 1 full game round



Lessons Learned

‣ Other ambitions turned out exactly as hoped for
‣ Very quick development and debugging 

turnarounds
‣ Comfortably specified embedded DSL
‣ Easy to use Haskell primitives to speed up 

sound specification



So Say We All


