The T-calculus: Towards a structured programming of (musical) time and space.

David Janin et al., LaBRI, Université de Bordeaux FARM 2013, Boston

1. An example

The bebop problem and the bebop solution [1]...

An example Tiled streams Re-synchronization Embeddings T-calculus Transducers Conclusio

My little blue suede shoes (Ch. Parker)

Musical analysis

Three times motive (a) followed by its conclusive variant (b).

String modeling (a)

String modeling (b)

Resulting modeling

Problem:

- we have inserted rests of various size : 5, 5, 1 and 8,
- we have lost the logical structure (3x(a) + (b)),
- handling variations will be even more messy.

Alternative : make the anacrusis and synchronization point explicit

The "real" first pattern:

modeled by:

The "real" second pattern:

which give:

with resulting mixed composition:

defined with both sequential and parallel features.

Here comes back the logical structure: 3x(a) + (b)!

This is tiled strings (or streams) modeling!

2. Tiled streams

Embedding (audio) strings and (audio) streams into tiled streams [2]

Tiled streams

Basic types A, B, ..., extended with a special silence value 0.

Tiled stream

A "bi-infinite" sequence of values $t: \mathbb{Z} \to A$ with an additional synchronization length $d(t) \in \mathbb{N}$.

Tiled streams

Basic types A, B, ..., extended with a special silence value 0.

Tiled stream

A "bi-infinite" sequence of values $t: \mathbb{Z} \to A$ with an additional synchronization length $d(t) \in \mathbb{N}$.

An example

Tiled stream product: the "free" case

Tiled stream product

Two tiled stream $t_1: \mathbb{Z} \to A$ and $t_2: \mathbb{Z} \to B$ and their product $t_1; t_2: \mathbb{Z} \to A \times B$ defined, for every $k \in \mathbb{Z}$, by

$$(t_1; t_2)(k) = (t_1(k), t_2(k - d(t_1)))$$

with resulting synchronization length

$$d(t_1; t_2) = d(t_1) + d(t_2)$$

Tiled stream product: the parameterized case

Let $op : A \times B \rightarrow C$

Operator lifting

Two tiled streams $t_1: \mathbb{Z} \to A$ and $t_2: \mathbb{Z} \to B$ let t_1 op $t_2: \mathbb{Z} \to C$ defined by $d(t_1 \ op \ t_2) = d(t_1) + d(t_2)$ and $(t_1 \ op \ t_2)(k) = t_1(k) \ op \ t_2(k - d(t_1))$

for every $k \in \mathbb{Z}$.

Synchronization + Fusion : t_1 op t_2

Tiled stream product: the parameterized case

Let $op : A \times B \rightarrow C$

Operator lifting

Two tiled streams $t_1: \mathbb{Z} \to A$ and $t_2: \mathbb{Z} \to B$ let $t_1 \ op \ t_2: \mathbb{Z} \to C$ defined by $d(t_1 \ op \ t_2) = d(t_1) + d(t_2)$ and

$$(t_1 \, op \, t_2)(k) = t_1(k) \, op \, t_2(k-d(t_1))$$

for every $k \in \mathbb{Z}$.

Synchronization + Fusion : $t_1 op t_2$

Tiled stream product: the "map" example

Let $map: (A \rightarrow B) \times A \rightarrow B$ defined by map(x, y) = x(y)

Tiled map

Two tiled streams $f: \mathbb{Z} \to (A \to B)$ and $t: \mathbb{Z} \to A$ with d(f) = 0 consider $map(f, t): \mathbb{Z} \to B$.

3. Re-synchronization

Reset and co-reset for resynchronization

Natural operators: resynchronization

Left and right resynchronization

A tiled stream $t: \mathbb{Z} \to A$, the synchronization reset R(t) and the synchronization co-reset L(t) of the tiled stream t defined, for every $k \in \mathbb{Z}$, by

$$R(t)(k)=t(k)$$
 and $L(t)(k)=t(k-d(t))$ with synchronization length $d(R(t))=d(L(t))=0$.

Derived operators: fork and join

Parallel fork and join

Tiled product and resets allows for defining parallel products:

with synchronization length $d(fork(t_1, t_2)) = d(t_2)$ and $d(fork(t_1, t_2)) = d(t_1)$.

I DE VARENCEN

4. Embeddings

Links with Hudak's *Polymorphic Temporal Media* [3] and ω -semigroups [4]

Embedding strings and concatenation

Finite strings and concatenation

Two A-strings $u:[0,d_u[\to A \text{ and } v:[0,d_v[\to A \text{ and their concatenation}]])$

$$u \cdot v : [0, d_u + d_v[\rightarrow A$$

defined by

$$u \cdot v(k) = \left\{ egin{array}{ll} u(k) & ext{when } 0 \leq k < d_u, \\ v(k-d_u) & ext{when } d_u \leq k < d_u + d_v. \end{array}
ight.$$

 $\varphi: \mathit{strings} \to \mathit{tiledStreams}$

String embedding: $\varphi(u) \cdot \varphi(v) = sum(\varphi(u); \varphi(v))$

$$sum \left(\begin{array}{c|cccc} 0 & 0 & \varphi(u) & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & \varphi(v) & 0 & 0 & 0 \end{array}\right)$$

Embedding streams and par

Infinite streams and zip

Two A-streams $u:[0,+\infty[\to A \text{ and } v:[0,+\infty[\to B \text{ and their zip} \\ u|v:[0,+\infty[\to A\times B$

defined by

$$u|v(k) = (u(k), v(k))$$

for every $0 \le k$.

 $\psi: \mathsf{streams} \to \mathsf{tiledStreams}$

Streams embedding : $\psi(u)|\psi(v) = \psi(u); \psi(v)$

Embedding strings and streams with mixed product

Mixed product

An A-string $u:[0,d_u[\to A \text{ and an }A\text{-stream }v:[0,+\infty[\to A \text{ and their mixed product}]$

$$u:: v: [0, +\infty[\rightarrow A$$

defined by

$$u :: v(k) = \begin{cases} u(k) & \text{when } 0 \le k < d_u \\ v(k - d_u) & \text{when } d_u \le k \end{cases}$$

for every $0 \le k$.

Mixed embedding: $\varphi(u) :: \psi(v) = R(sum(\varphi(u); \psi(v)))$

$$R\left(sum\left(\begin{array}{c|c}000 & u & 000 \\ \hline 000 & v & \end{array}\right)\right)$$

5. T-calculus

A syntax for the tiled algebra and some type systems

Syntax

```
primitive constructs –
                     (constant)
                     (variable)
х
f(p_1, p_2, \dots, p_n) (function lifting)
                     (declaration)
x = p_1
R(p_1)
                     (sync. reset)
                     (sync. co-reset)
L(p_1)
                     - derived constructs -
                     (operator)
p_1 op p_2
                     (synchronization product)
p_1; p_2
```

Example

Assume A with operator + with neutral element 0.

Sound processing

A sound processing function $f: A^n \to A$ on sliding windows of length n > 1. The constant A-tiled stream 0 with d(0) = 1.

$$Apply(f,t) = f(\underbrace{(R(t)+0;R(t)+0;\cdots;R(t)+0;R(t))}_{n \text{ times}})$$

for an arbitrary tiled stream t with d(p) = n - 1.

In picture with n = 4

Semantics (principle)

The semantic mapping

An environment $\mathcal E$ that maps variables to tiled streams.

An program interpretation $[\![p]\!]_{\mathcal{E}}$ in a tiled stream is sound when it satisfies the inductive rules (next slide) and the fixpoint rule:

(Y) For every x occurring in p we have
$$\mathcal{E}(x) = \llbracket p_x \rrbracket_{\mathcal{E}}$$
.

with p_x the unique definition of x in p.

Canonical fixpoint semantics (a little adhoc)

Start with silent interpretation (i.e. 0) for every variable and iterate semantics rules till a fixpoint is reach.

Semantics (inductive rules)

- \triangleright Variable: $\llbracket x \rrbracket_{\mathcal{E}}(k) = \mathcal{E}(x)(k)$,
- Mapping: $d(\llbracket f(p_1, \dots, p_n) \rrbracket_{\mathcal{E}}) = \sum_{i \in [1, n]} d(\llbracket p_i \rrbracket_{\mathcal{E}})$ and $\llbracket f(p_1, \dots, p_n) \rrbracket_{\mathcal{E}}(k) = f(v_1, \dots, v_n)$ with $v_i = \llbracket p_i \rrbracket_{\mathcal{E}} \left(k - \sum_{1 < j < i} d(\llbracket p_j \rrbracket_{\mathcal{E}}) \right)$,
- Decl.: $d(\llbracket \mathbf{x} = p_{\mathbf{x}} \rrbracket_{\mathcal{E}}) = d(\llbracket p_{\mathbf{x}} \rrbracket_{\mathcal{E}})$ and $\llbracket \mathbf{x} = p_{\mathbf{x}} \rrbracket_{\mathcal{E}}(k) = \llbracket p_{\mathbf{x}} \rrbracket_{\mathcal{E}}(k),$
- $\quad \triangleright \ \mathsf{Reset:} \ d\big(\llbracket \mathtt{R}(p_1) \rrbracket_{\mathcal{E}} \big) = 0 \ \mathsf{and} \ \llbracket \mathtt{R}(p_1) \rrbracket_{\mathcal{E}}(k) = \llbracket p_1 \rrbracket_{\mathcal{E}}(k),$
- ho Co-res.: $d(\llbracket L(p_1) \rrbracket_{\mathcal{E}}) = 0$ and $\llbracket L(p_1) \rrbracket_{\mathcal{E}}(k) = \llbracket p_1 \rrbracket_{\mathcal{E}}(k + d(\llbracket p_1 \rrbracket_{\mathcal{E}}))$

Typing I: basic types and sync. length inference

▷ Constants:

$$\Gamma \vdash c : (1, \alpha_c)$$

Variables:

$$\frac{(\mathtt{x},(d,\alpha))\in\Gamma}{\Gamma\vdash\mathtt{x}:(d,\alpha)}$$

▶ Mapping:

$$\frac{\Gamma \vdash p_i : (d_i, \alpha_i) \quad (i \in [1, n])}{\Gamma \vdash f(p_1, \dots, p_n) : (d_1 + \dots + d_n, \alpha)}$$

with
$$f: \alpha_1 \times \alpha_2 \times \cdots \times \alpha_n \to \alpha$$

▷ Declaration:

$$\frac{\Gamma \vdash \mathbf{x} : (d, \alpha) \quad \Gamma \vdash p : (d, \alpha)}{\Gamma \vdash \mathbf{x} = p : (d, \alpha)}$$

▷ Sync. reset:

$$\frac{\Gamma \vdash p : (d, \alpha)}{\Gamma \vdash \mathbb{R}(p) : (0, \alpha)}$$

▷ Sync. co-reset:

$$\frac{\Gamma \vdash p : (d, \alpha)}{\Gamma \vdash L(p) : (0, \alpha)}$$

Typing II: Synchronization profile

Sync. profile definition

A tiled stream $t: \mathbb{Z} \to A$.

The triple $(I, d, r) \in \overline{\mathbb{N}} \times \mathbb{N} \times \overline{\mathbb{N}}$ is a *synchronization profile* for t when d(t) = d and for every $k \in \mathbb{Z}$,

if
$$t(f) \neq 0$$
 then $-l \leq k \leq d + r$

with $\overline{\mathbb{N}} = \mathbb{N} + \infty$ and $x + \infty = \infty + x = \infty$ for every $x \in \overline{\mathbb{N}}$.

4 D X 4 D X 4 D X 4 D X

Remark: op-product of two tiled streams

Re-synchronization

Lemma

The set $\overline{\mathbb{N}} \times \mathbb{N} \times \overline{\mathbb{N}}$ with product

$$(I, d, r) \cdot (I', d', r') = (\max(I, I' - d), d + d', \max(r - d', r'))$$

is related with the free inverse monoid with one generator [5, 6] with neutral element (0,0,0).

Typing II: Synchronization profile rules

Constants: $\Delta \vdash c : (0,1,0)$ $(x,(l,d,r)) \in \Delta$ ▷ Variables: $\Delta \vdash x : (I, d, r)$ $\frac{\Delta \vdash p_i : (I_i, d_i, r_i) \ (i \in [1, n])}{\Delta \vdash f(p_1, \cdots, p_n) : (I, d, r)}$ ▶ Mapping: with $I = \max (I_i - \sum_{1 \le j \le i} d_j)$, $d = \sum_i d_i$, and $r = \max (r_i - \sum_{i < j \le n} d_j)$, $\Delta \vdash x : (I, d, r) \quad \Delta \vdash p : (I, d, r)$ ▷ Declaration: $\Delta \vdash x = p : (I, d, r)$ $\Delta \vdash p : (I, d, r)$ Sync. reset: $\Delta \vdash R(p) : (I, 0, d+r)$ $\frac{\Delta \vdash p : (I, d, r)}{\Delta \vdash L(p) : (I + d, 0, r)}$ ▷ Sync. co-reset:

6. Transducers

When computing is easy

Operational semantics: example

Example

with x indices marked in red. And, for every $k \in \mathbb{Z}$, we have: $[\![p_x]\!]_{\mathcal{E}}(k) = 1 + [\![x]\!]_{\mathcal{E}}(k + -1)$ and $\delta(p_x, x) = \{-1\}$.

Remark

Iterative semantics is thus uniquely determined by (1) 0 everywhere in the past and (2) a computation rule compatible with time flow.

Operational semantics: temporal dependencies

Definition

We look for

$$\delta$$
 : Program $imes$ Variables o Offsets

such that, for every program

$$p = t(x_1, x_2, \cdots, x_n)$$

there exists a function

$$f_p: \prod \{\alpha_{x_i}: 1 \leq i \leq n, d \in \delta(p, x_i)\} \to \alpha_p$$

such that, for every "good" valuation \mathcal{E} :

$$[\![p]\!]_{\mathcal{E}}(\mathbf{k}) = f_p\left(\{[\![x_i]\!]_{\mathcal{E}}(\mathbf{k}+\mathbf{d}): 1 \leq i \leq n, \mathbf{d} \in \delta(p,x_i)\}\right)$$

for every $k \in \mathbb{Z}$.

Operational semantics: direct temporal dependencies

Direct temporal dependencies rules

- \triangleright Constants: $\delta(c, x) = \emptyset$,
- Variable: $\delta(y,x) = \emptyset$ when x and y are distinct and $\delta(x,x) = \{0\}$ otherwise,
- \triangleright Mapping: $\delta(f(p_1, \dots, p_n), x) =$

$$\bigcup_{1 \leq i \leq n} \left(\delta(p_i, \mathbf{x}) - \sum_{1 \leq j < i} d(p_j) \right),\,$$

- \triangleright Declaration: $\delta(y = p_v, x) = \delta(y, x)$,
- \triangleright Sync. reset: $\delta(R(p_1), x) = \delta(p_1, x)$,
- \triangleright Sync. co-reset: $\delta(L(p_1), x) = \delta(p_1, x) + d(p_1)$.

Operational semantics: iterated temporal dependencies

Definition

For every program p, every variable x that occurs in p, every subprogram q of p, let:

$$\delta^*(q, \mathbf{x}) = \delta(q, \mathbf{x}) \cup \bigcup_{\mathbf{y} \in \mathcal{X}_p} \left(\delta(q, \mathbf{y}) + \delta^*(p_{\mathbf{y}}, \mathbf{x})\right)$$

with
$$X + Y = \{x + y \in \mathbb{Z} : x \in X, y \in Y\}.$$

Theorem

Assume that for every variable x that occurs in p the set $\delta^*(x,x)$ only contained strictly negative values.

Then the program p admits an iterative semantics that is causal and with finite past.

Moreover, it can be compiled into a finite state synchronous transducer/mealy machine [7].

7. Conclusion

Summary

- Programming time with tiled streams,
- The underlying algebra (SEQ, RESET, CO-RESET),
- A type system for causality and effective start,
- A finite state operational semantics (mealy machine).

Dynamical tilings

Question

Computing sync. length out of RT input via input monitoring ? Induced conditionals and loops ?

Multi-tempi semantics ?

- Distinguishing active tiled streams, e.g. score follower,
- Passive/reactive tiled streams, e.g. generated tiled streams.

- [1] D. Janin, "Vers une modélisation combinatoire des structures rythmiques simples de la musique," *Revue Francophone d'Informatique Musicale (RFIM)*, vol. 2, 2012.
- [2] F. Berthaut, D. Janin, and B. Martin, "Advanced synchronization of audio or symbolic musical patterns: an algebraic approach," *International Journal of Semantic Computing*, vol. 6, no. 4, pp. 409–427, 2012.
- [3] P. Hudak, "A sound and complete axiomatization of polymorphic temporal media," Tech. Rep. RR-1259, Department of Computer Science, Yale University, 2008.
- [4] D. Perrin and J.-E. Pin, *Infinite Words: Automata, Semigroups, Logic and Games*, vol. 141 of *Pure and Applied Mathematics*. Elsevier, 2004.
- [5] M. V. Lawson, "McAlister semigroups," *Journal of Algebra*, vol. 202, no. 1, pp. 276 294, 1998.

- [6] M. V. Lawson, Inverse Semigroups: The theory of partial symmetries. World Scientific, 1998.
- [7] J. Sakarovitch, *Elements of Automata Theory*. Cambridge University Press, 2009.

