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1. An example

The bebop problem and the bebop soluti



An example

My little blue suede shoes (Ch. Parker)
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Musical analysis

Three times motive (a) followed by its conclusive variant (b).
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String modeling (a)
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String modeling (b)

modeled by:




An example

Resulting modeling

Problem:
@ we have inserted rests of various size : 5, 5, 1 and 8,
@ we have lost the logical structure (3x(a) + (b)),

@ handling variations will be even more messy.
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Alternative : make the anacrusis and synchronization point

explicit
The “real” first pattern:
ﬁji — N
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modeled by:
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The “real” second pattern:

Ej‘f.:q‘tﬁltillllg_‘.’_ki- ]

anacrouse

Conclusion
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with resulting mixed composition:
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defined with both sequential and parallel features.
Here comes back the logical structure: 3x(a) + (b) !

This is tiled strings (or streams) modeling !
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2. Tiled streams

Embedding (audio) strings and (audio) strea
streams [2]



Tiled streams

Tiled streams

Basic types A, B, ..., extended with a special silence value 0.

Tiled stream

A “bi-infinite” sequence of values t : Z — A with
an additional synchronization length d(t) € N.

synchronization length
by
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Tiled streams

Tiled streams

Basic types A, B, ..., extended with a special silence value 0.

Tiled stream

A “bi-infinite” sequence of values t : Z — A with
an additional synchronization length d(t) € N.

synchronization length
&

,,,,,,,,,,,,,,,, >

realization length (possibly finite)



Tiled streams

Tiled stream product: the “free” case

Tiled stream product

Two tiled stream t; : Z — A and t, : Z — B and their product
t1; tr : Z — A x B defined, for every k € Z, by

(t1; t2)(k) = (t1(k), t2(k — d(t1)))

5 t 0
-3 0 8 13
9 [ %
2 0 4 8
§ t 2
9 [ ¢
3 0 8 12 16

with resulting synchronization length
d(t1; ) = d(t1) + d(t2)



Tiled streams

Tiled stream product: the parameterized case
Letop: Ax B— C

Operator lifting
Two tiled streams t; : Z — Aand tp : Z — Blet tyopty : Z — C
defined by d(t; op t2) = d(t1) + d(t2) and
(t1op t2)(k) = t1(k) op ta(k — d(t1))
for every k € Z.

Synchronization + Fusion : t; op t,

g t1 0

-3 0 8 13




Tiled streams

Tiled stream product: the parameterized case
Letop: Ax B— C

Operator lifting
Two tiled streams t; : Z — Aand tp : Z — Blet tyopty : Z — C
defined by d(t; op t2) = d(t1) + d(t2) and
(t1op t2)(k) = t1(k) op ta(k — d(t1))
for every k € Z.

Synchronization + Fusion : t; op t,

) 51 0
-3 0 8 13
§ B[ Vo] 5 0
2 0 4 8
g floph,. [V3[[=Viopwa ?

-3 0 8 12 16



Tiled streams

Tiled stream product: the “map” example

Let map : (A — B) x A — B defined by map(x,y) = x(y)

Tiled map

Two tiled streams f : Z — (A — B) and t : Z — A with d(f) =0
consider map(f,t):Z — B.

map(f, t)
S3 0 f 8 e13
32 0 t 8 215
§ map(f,t) ¢
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3. Re-synchronization

Reset and co-reset for resynchronization



Re-synchronization

Natural operators: resynchronization

Left and right resynchronization

A tiled stream t : Z — A, the synchronization reset R(t) and the
synchronization co-reset L(t) of the tiled stream t defined, for

every k € Z, by
R(t)(k) = t(k) and L(t)(k) = t(k — d( )
with synchronization length d(R(t)) = d(L(t)) =

s»3 0 L 8 e13
s»3 0 R(t) e13
S-11 -8 L(t) 0 e5



Re-synchronization

Derived operators: fork and join

Parallel fork and join

Tiled product and resets allows for defining parallel products:

t1

tr

<>

|

R(t)

{

to

<

fork(tl, t2) = R(tl); to

with synchronization length d(fork(t1, t2)) = d(t2) and

d(join(tl, tg)) = d(tl).

t
L(z2)

<

Join(ty, ty) = t1; L(t2)
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4. Embeddings

Links with Hudak's Polymorphic Temporal
w-semigroups [4]



Embeddings

Embedding strings and concatenation

Finite strings and concatenation
Two A-strings v : [0,dy[— A and v : [0, d,[— A and their
concatenation
u-v:[0,d,+d,J[— A
defined by

u-v(K) = u(k) when 0 < k < d,,
| v(k—d,) whend, < k<d,+d,.

@ : strings — tiledStreams
String embedding: ©(u) - ¢(v) = sum(p(u); p(v))

000 ¢(u) 000
5“’”( 000 o(v) 000)




Embeddings

Embedding streams and par

Infinite streams and zip

Two A-streams u : [0, 4+o00[— A and v : [0, +oo[— B and their zip
ulv : [0, +o00[— AXx B

defined by

for every 0 < k.

1 : streams — tiledStreams

Streams embedding : ¢(u)|y(v) = ¥ (u); ¥(v)

000 u
000 v




Embeddings

Embedding strings and streams with mixed product

Mixed product
An A-string u : [0, d,[— A and an A-stream v : [0, +00[— A and
their mixed product
u:v:[0,4oo[— A
defined by
<
(k) = { i d) whendih

for every 0 < k.

Mixed embedding: ¢(u) :: ¥(v) = R(sum(p(u); ¥ (v)))

000 u 000
R(sum( 000 v >>
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5. T-calculus

A syntax for the tiled algebra and some



T-calculus

Syntax

C

X
£(p1,p2, ", Pn)
X=p1

R(p1)

L(p1)

p10p p2
p1; P2

— primitive constructs —
(constant)

(variable)

(function lifting)
(declaration)

(sync. reset)

(sync. co-reset)

— derived constructs —
(operator)
(synchronization product)




T-calculus

Example
Assume A with operator + with neutral element O.
Sound processing

A sound processing function f : A” — A on sliding windows of
length n > 1. The constant A-tiled stream 0 with d(0) = 1.

Apply(f,t) = f((R(t) + 0; R(t) + 0;--- ; R(t) + 0; R(t)))

n times
for an arbitrary tiled stream t with d(p) = n — 1.

In picture with n = 4




T-calculus

Semantics (principle)

The semantic mapping

An environment £ that maps variables to tiled streams.
An program interpretation [p]¢ in a tiled stream is sound when it
satisfies the inductive rules (next slide) and the fixpoint rule:

(Y) For every x occurring in p we have £(x) = [[p«]c-

with py the unique definition of x in p.

Canonical fixpoint semantics (a little adhoc)

Start with silent interpretation (i.e. 0) for every variable and
iterate semantics rules till a fixpoint is reach.



T-calculus

Semantics (inductive rules)

c when k=0,
> Const.: d([c]e) =0 and [c]e(k) = { 0 when k 20

> Variable: [x]e(k) = E(x)(k),
> Mapping: d([f(p1, - ,pn)]e) = Z,-e[l,n] d([pile)
and [£(p1, -, pa)]e(k) = £(vi,--- , vn)

with v; = [pile (k — g d(Ipile)).

> Decl.: d([x=px]c) = d([px]e) and
[x = pe]e(k) = [pxle(k),
> Reset: d([R(p1)]e) =0 and [R(p1)]sc(k) = [p1]e(k),
> Co-res.: d([L(p1)]e) =0 and
[L(pO]e(k) = [pi]e(k + d([p1]e))




T-calculus

Typing | : basic types and sync. length inference

> Constants: Feian
" ) C
> Variables: (rx,l_(c}l(oz())e)l'
o CEpi: (di, i) (IE[l n])
> Mapping: FF£Cp1,-- ,pn) : (AL + -+ dp, )

with f: o1 X ap X -+ X ap — @
N-x:(d,a) TFp:(d,a)

> Declaration: r X=p (d a)
> Sync. reset: T R(p) ( ,a)
[-p:(d,a)

> Sync. co-reset: F'=L(p) :(0,a)




T-calculus

Typing Il: Synchronization profile

Sync. profile definition

A tiled stream t : Z — A.
The triple (/,d,r) € N x N x N is a synchronization profile for t
when d(t) = d and for every k € Z,

if t(f) #0then —/ < k<d+r
with N = N + 0o and x 4 0o = 0o + x = oo for every x € N.

/ d r

00000 | t | 00000

-1 0 d d+r




T-calculus

Typing II: Induced monoid

Remark: op-product of two tiled streams

/ d r
1> |
| o |
I d’ r
l p_op p |
max(/, I — d) d+d' max(r — d’, r')

Lemma
The set N x N x N with product

(I,d,r)-(I',d',r") = (max(l,I" — d),d + d’,max(r — d’, r"))
is related with the free inverse monoid with one generator [5, 6]
with neutral element (0,0, 0).



T-calculus

Typing Il: Synchronization profile rules

> Constants:

> Variables:
> Mapping:

with / = max (

> Declaration:

> Sync. reset:

> Sync. co-reset:

AFc:(0,1,0)

(x,(l,d,r)) € A

AI—X l,d,r)
AFpi:(l,di,r) (i €[1,n])
Akf(pla"'7pn)'(/7d)r)

— Yi<j<i '>1d:Zidiv

and r-max(r,-—z,-<j§ndj,

AFx:(l,d,r) AFp:(l,d,r)
AFx=p:(l,d,r)
Arp:(ld,r)

AFR(p) : (/,0, d+r)

AFp:(l,dr)

AFL(p): (+d0r)
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6. Transducers

When computing is easy



Transducers

Operational semantics: example

Example
A program p defined by x = 1 + R(1 + L(x))
—_—————
Px
[ [ x etc. ..
0 k
1
.......... 1
| L(x) etc. ..
0 k-1

with x indices marked in red. And, for every k € Z, we have:
[p<]c(k) =1+ [x]e(k + —1) and 0(px,x) = {—1}.

Remark

Iterative semantics is thus uniquely determined by (1) 0 everywhere
in the past and (2) a computation rule compatible with time flow.



Transducers

Operational semantics: temporal dependencies
Definition
We look for

6 : Program x Variables — Offsets
such that, for every program
p = t(x1, X2, ,Xn)
there exists a function
S H{O‘x,- :1<i<ndedlp,x)}— ap
such that, for every “good” valuation &:
[Ple(k) = £, ({Ixde(k + d) : 1< i < n,d € 3(p,x)})

for every k € Z.



Transducers

Operational semantics: direct temporal dependencies

Direct temporal dependencies rules

v

Constants: d(c, x)

Variable: §(y,x) = V) hen x and y are distinct
and 6(x,x) = {0} otherwise,

Mapping: 6(£(p1,- -, pn),x) =

U ( pix de,),

1<i<n 1<j<i

v

v

v

Declaration: 6(y = py, x) = (y, x),
Sync. reset: 6(R(p1),x) = d(p1,x),
Sync. co-reset: 6(L(p1),x) = d(p1,%) + d(p1)-

v VvV




Transducers

Operational semantics: iterated temporal dependencies
Definition
For every program p, every variable x that occurs in p, every
subprogram q of p, let:

0*(q,x) = (g, %) UUyex, (3(q. ) + 0*(py, x))

with X+ Y ={x+yecZ:xeX,ye Y}

Theorem

Assume that for every variable x that occurs in p the set 0*(x,x)
only contained strictly negative values.

Then the program p admits an iterative semantics that is causal
and with finite past.

Moreover, it can be compiled into a finite state synchronous
transducer/mealy machine [7].
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7. Conclusion




Summary

Programming time with tiled streams,
The underlying algebra (SEQ, RESET, CO-RESET),

A type system for causality and effective start,

A finite state operational semantics (mealy machine).

Conclusion



Conclusion

Dynamical tilings

Question

Computing sync. length out of RT input via input monitoring ?
Induced conditionals and loops 7
Multi-tempi semantics ?

@ Distinguishing active tiled streams, e.g. score follower,

@ Passive/reactive tiled streams, e.g. generated tiled streams.
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