Categorial Grammars for Automatic Generation of Music

Halley Young
ICFP 2017 FARM Workshop
Outline

• Introduction to music as math vs language

• Mathematical representations of musical objects

• Categorial grammars and linguistic/musical objects

• Use of categorial grammars to automatically generate music
Music as Math vs Language

- Pythagoras: Music as “sounding number”
- Fast forward 2000 years: “Musica poetica” (music as rhetoric)
Music is Numbers

MIDI: (Pitch(Int), Duration(Float), Offset(Float), Instrument(Enum))

\[\{(64, 1.0), (62, 1.0), (60, 1.0), (62, 1.0), (64, 1.0), (64, 1.0), (64, 2.0), (64, 1.0), (62, 1.0), (62, 1.0), (62, 2.0), (64, 1.0), (64, 1.0), (67, 1.0), (67, 1.0), (62, 1.0), (60, 1.0), (62, 1.0), (64, 1.0), (64, 1.0), (64, 1.0), (64, 1.0), (64, 1.0), (64, 1.0), (62, 1.0), (62, 1.0) (62, 0.5) (62, 0.5), (64, 1.0), (62, 1.0), (60, 1.0)\}\]

Raw audio: long list of decimal numbers between -1 and 1
Music represents a complex mathematical object
• Pentatonic Scale
• Emphasis on pitch-class D
• Repetitive Eighth-Sixteenth-Sixteenth figure
• Inversion + Transposition of first two beats
• Repetition of first three beats
Generative Approach to Musical Complexity

- Music is complex because a complex process generated it
- may be possible to describe generation of music in multiple ways
- processes described as involving musical objects
Musical Objects

- `dur :: Float`
- `pitch :: Int`
- `note :: (pitch, dur)`
- `melody :: List<note>`
- `rhythm :: List<dur>`
- `scale :: List<pitch-class>`
- `retrograde :: melody -> melody`
- `transposition :: pitch -> pitch`
Categorial Grammars

- Linguistic Formalism based on type theory and lambda calculus
- Used to relate various words to the composite meaning of the entire sentence
- Words inhabit different types, but the resulting type of the sentence is always a statement in predicate calculus
Kim walked and fed the dog.

Kim: \(k \)
walked: \(\lambda x[\text{Walked}(x)] \)
and: \(\lambda x\lambda y\lambda z[x(z) \& y(z)] \)
fed: \(\lambda x\lambda y[\text{Fed}(y,x)] \)
the: \(\lambda x[x] \)
dog: \(d \)

Kim walked and fed the dog: \(\lambda x\lambda y\lambda z[x(z) \& y(z)] (\lambda x[\text{Walked}(x)]) (\lambda x\lambda y[\text{Fed}(y,x)] (d)) (k) = \)

\(\text{Walked}(k) \& \text{Fed}(k,d) \)
Music as Language

• Music has “semantics”

• Music has structure akin to “syntax” which interacts with and produces the “semantics”

• This syntax/semantics related to the relationships between musical objects
Categorical Grammars in Music

- Words have different types := Musical objects have different types

- The type of a composite sentence is the type of a predicate calculus statement := The final type of a composite piece of music is always type `melody = List<note>`

- Combining words := Combining musical objects to create other musical objects
Categorial Grammars in Music

Objects:
rhythm = [0.5, 0.5, 1.0]
start_pit = 60
contour = [1, 3, 2]

combine :: rhythm -> pitch -> contour -> melody

Lambda expression:
\(\lambda x, y, z. \text{combine}(x, y, z) \)
(rhythm, [0.5, 0.5, 1.0])(start_pit, 60)),
(contour, [1, 3, 2])
Categorial Grammars in Music

\(\lambda x,y,z. \text{combine}(x,y,z) \)

(rhythm, [0.5, 0.5, 1.0])(start_pit,60),
(contour, [1, 3, 2])
How combine works

Def combine(rhythm_z, start_pitch_y, contour_x):
 all_pitch_sequences = start_pitch_y + cartesian_product(all_pitches, product_n = length(contour_x) – 1)
 filter(all_pitch_sequences, function_to_filter = lambda y: has_contour(contour_x, y))
 good_melodies = []
 For pit_sequence in all_pitch_sequences:
 good_melodies.append([Note(pitch = pit_sequence[i], duration = rhythm[i]) for i in range(0, length(rhythm))])
 return good_melodies
Hierarchical Expressions

augment :: melody -> melody
transpose :: melody -> melody
combine :: rhythm -> pitch -> contour -> melody

\(\lambda x, d. [x, \text{augment}(x, d)] \)
\(\lambda x, n. [x, \text{transpose}(x, n)](\lambda x, y, z. \text{combine}(x, y, z) \ (\text{rhythm}, [0.5, 0.5, 1.0])(\text{start_pit}, (5, 0)), \\
(\text{contour}, [1, 3, 2]))(3) \)
Musical Semantics

• Semantics of individual expressions?
 • the set of things in the (platonic?) universe of musical objects that they represent

• Semantics of a melody?
 • the semantics of all categorial analyses that could be used to generate the piece of music
Automatically Generating Musical Lambda Expressions

- Traversal of type-relationship graph

- Goal: find path from “primitive” types to melodies (including loops)
Relationships Between Musical Objects

Determined by what functions exist to combine them
Relationships Between Musical Objects
def genPath(desired_final_node = melody):

 main_path = path in graph from base type-nodes to the desired final node (such that each edge in the path represents a function that takes the source node and returns the root node

 for each (edge, source_node, target_node) in path:

 other_source_nodes = other arguments to the function besides the specified source node

 for each source_node in other_source_nodes:

 new_sub_graph = genPath(desired_final_node = other_source_nodes)

 connect new_sub_graph to main_path

 return main_path
Results

```python
mel = ( (lambda i1, j1: i1(j1))
((lambda i2, j2: i2(j2))(applyAllTo, [id, augDimRepeatMelody,
addAppogiaturasMelody,
chromaticInvertMelody])
((lambda i2, j2: i2(j2))
(combine10,
(["pcs_list", (lambda i4, j4: i4(j4))
(combine11, (["chord_list",
(lambda i6, j6: i6(j6))
((lambda i7, j7: i7(j7))
(applyAllTo,
[ id, fourOf, fiveOf ], ]
)),
(lambda i7, j7: i7(j7))
(combine15, (["degree", -1 ],
"scale", (lambda i9, j9: i9(j9))
(combine17, (["scale_type", "diatonic"],
"pc", [6,11,5]), ])
"sign", 0 ),
"chord_type",
["triad","ninth","seventh","eleventh"]
),
"rhythm", (lambda i4, j4: i4(j4))
(combine7, (["length", 2.0 ],
"n_length", 3)),
("octave",6),])))))[1]
writeScore(mel)
```
Results
Questions?