
FAUST Tutorial for Functional Programmers

Y. Orlarey, S. Letz, D. Fober, R. Michon

ICFP 2017 / FARM 2017

What is Faust ?

What is Faust?

A programming language (DSL) to build electronic music
instruments

Some Music Programming Languages

4CED

Adagio

AML

AMPLE

Antescofo

Arctic

Autoklang

Bang

Canon

CHANT

Chuck

CLCE

CMIX

Cmusic

CMUSIC

Common Lisp
Music

Common
Music

Common
Music
Notation

Csound

CyberBand

DARMS

DCMP

DMIX

Elody

EsAC

Euterpea

Extempore

Faust

Flavors Band

Fluxus

FOIL

FORMES

FORMULA

Fugue

Gibber

GROOVE

GUIDO

HARP

Haskore

HMSL

INV

invokator

KERN

Keynote

Kyma

LOCO

LPC

Mars

MASC

Max

MidiLisp

MidiLogo

MODE

MOM

Moxc

MSX

MUS10

MUS8

MUSCMP

MuseData

MusES

MUSIC 10

MUSIC 11

MUSIC 360

MUSIC 4B

MUSIC 4BF

MUSIC 4F

MUSIC 6

MCL

MUSIC III/IV/V

MusicLogo

Music1000

MUSIC7

Musictex

MUSIGOL

MusicXML

Musixtex

NIFF

NOTELIST

Nyquist

OPAL

OpenMusic

Organum1

Outperform

Overtone

PE

Patchwork

PILE

Pla

PLACOMP

PLAY1

PLAY2

PMX

POCO

POD6

POD7

PROD

Puredata

PWGL

Ravel

SALIERI

SCORE

ScoreFile

SCRIPT

SIREN

SMDL

SMOKE

SSP

SSSP

ST

Supercollider

Symbolic Composer

Tidal

Brief Overview to Faust

Faust offers end-users a high-level alternative to C to develop
audio applications for a large variety of platforms.

The role of the Faust compiler is to synthesize the most
efficient implementations for the target language (C, C++,
LLVM, Javascript, etc.).

Faust is used on stage for concerts and artistic productions,
for education and research, for open sources projects and
commercial applications :

What Is Faust Used For ?

Artistic Applications
Sonik Cube (Trafik/Orlarey), Smartfaust (Gracia), etc.

https://www.youtube.com/watch?v=_GwOXVvrOIU
https://www.youtube.com/watch?v=o38U347Djbc

Open-Source projects
Guitarix: Hermann Meyer

https://www.youtube.com/watch?v=_GwOXVvrOIU

WebAudio Applications
YC20 Emulator

Thanks to the HTML5/WebAudio API and Asm.js it is now
possible to run synthesizers and audio effects from a simple web
page !

http://foo-yc20.codeforcode.com

Sound Spatialization
Ambitools: Pierre Lecomte, CNAM

Ambitools (Faust Award 2016), 3-D sound spatialization using
Ambisonic techniques.

http://www.sekisushai.net/ambitools/

Medical Applications
Brain Stethoscope: Chris Chafe, CCRMA-Stanford

Brain stethoscope turns seizures into music in hopes of giving
the listener an empathetic and intuitive understanding of the
neural activity.

Simulation Applications
Stanford Car Simulator: Romain Michon, CCRMA-Stanford

Stanford Car Simulator, simulation of the sound of a car engine
in Faust.

Simulation Applications
Bell simulations: Romain Michon and Chris Chafe, CCRMA-Stanford

CAD description of a bell turned into a procedural audio
simulation in Faust

Hearing Aids Applications
Soniccloud, USA

Soniccloud: every cell phone call can be perfectly calibrated for an
individual’s unique Hearing Fingerprint – across 10 sonic
dimensions.

The team at SonicCloud
has had an outstanding
experience working with
Faust. Specifically, we
have been able to optimize
code to run our DSP
algorithms in real-time
without having to
hand-optimize C/C++
code or write assembler.
(Soniccloud)

https://soniccloud.com/

Musical Instruments
Moforte, USA

Moforte (USA) designs musical instruments for iPad and iOS
using Faust

https://www.youtube.com/watch?v=CDLA8B8BkbQ
https://www.youtube.com/watch?v=GH97L1oxvQE

Exercice 1: Djembe

Exercise 1: Djembe

Faust Online Compiler:

https://faust.grame.fr/onlinecompiler

Faust Libraries Documentation:

http://faust.grame.fr/libraries.html

Faust Code:

import("stdfaust.lib");

process = button("play")

: pm.djembe (330 ,0.8 ,0.5 ,1);

https://faust.grame.fr/onlinecompiler
http://faust.grame.fr/libraries.html

Faust Signals and Time Model

Faust Signals and Time Model

Faust programs operate on periodically sampled signals.

A signal s ∈ S is a time to sample function.

Two kinds of signals: S = SZ ∪ SR
I Integer signals: SZ = Z→ Z
I Floating-point signals: SR = Z→ R

The value of a Faust signal is always 0 before time 0 :
I ∀s ∈ S, s(t < 0) = 0

A Faust program denotes a signal processor p ∈ P, a
(continuous) function that maps a group of n input signals to
a group of m output signals :

I P = Sn → Sm

Faust Signals and Time Model
Example, a ”constant” signal

process = 1;

1

process

0 1 2 3 4-1-2-3-4

t

y(t) =

{
1 t ≥ 0
0 t < 0

Primitive Signal Processors

Faust Primitives
Arithmetic operations

Syntax Type Description
+ S2 → S1 addition: y(t) = x1(t) + x2(t)
- S2 → S1 subtraction: y(t) = x1(t)− x2(t)
* S2 → S1 multiplication: y(t) = x1(t) ∗ x2(t)

∧ S2 → S1 power: y(t) = x1(t)x2(t)

/ S2 → S1 division: y(t) = x1(t)/x2(t)
% S2 → S1 modulo: y(t) = x1(t)%x2(t)
int S1 → S1 cast into an int signal: y(t) = (int)x(t)
float S1 → S1 cast into an float signal: y(t) = (float)x(t)

Faust Primitives
Bitwise operations

Syntax Type Description
& S2 → S1 logical AND: y(t) = x1(t)&x2(t)
| S2 → S1 logical OR: y(t) = x1(t)|x2(t)
xor S2 → S1 logical XOR: y(t) = x1(t) ∧ x2(t)
<< S2 → S1 arith. shift left: y(t) = x1(t) << x2(t)
>> S2 → S1 arith. shift right: y(t) = x1(t) >> x2(t)

Faust Primitives
Comparison operations

Syntax Type Description
< S2 → S1 less than: y(t) = x1(t) < x2(t)
<= S2 → S1 less or equal: y(t) = x1(t) <= x2(t)
> S2 → S1 greater than: y(t) = x1(t) > x2(t)
>= S2 → S1 greater or equal: y(t) = x1(t) >= x2(t)
== S2 → S1 equal: y(t) = x1(t) == x2(t)
!= S2 → S1 different: y(t) = x1(t)! = x2(t)

Faust Primitives
Trigonometric functions

Syntax Type Description
acos S1 → S1 arc cosine: y(t) = acosf(x(t))
asin S1 → S1 arc sine: y(t) = asinf(x(t))
atan S1 → S1 arc tangent: y(t) = atanf(x(t))
atan2 S2 → S1 arc tangent of 2 signals: y(t) = atan2f(x1(t), x2(t))
cos S1 → S1 cosine: y(t) = cosf(x(t))
sin S1 → S1 sine: y(t) = sinf(x(t))
tan S1 → S1 tangent: y(t) = tanf(x(t))

Faust Primitives
Other Math operations

Syntax Type Description
exp S1 → S1 base-e exponential: y(t) = expf(x(t))
log S1 → S1 base-e logarithm: y(t) = logf(x(t))
log10 S1 → S1 base-10 logarithm: y(t) = log10f(x(t))
pow S2 → S1 power: y(t) = powf(x1(t), x2(t))
sqrt S1 → S1 square root: y(t) = sqrtf(x(t))
abs S1 → S1 absolute value (int): y(t) = abs(x(t))

absolute value (float): y(t) = fabsf(x(t))
min S2 → S1 minimum: y(t) = min(x1(t), x2(t))
max S2 → S1 maximum: y(t) = max(x1(t), x2(t))
fmod S2 → S1 float modulo: y(t) = fmodf(x1(t), x2(t))
remainder S2 → S1 float remainder: y(t) = remainderf(x1(t), x2(t))
floor S1 → S1 largest int ≤: y(t) = floorf(x(t))
ceil S1 → S1 smallest int ≥: y(t) = ceilf(x(t))
rint S1 → S1 closest int: y(t) = rintf(x(t))

Faust Primitives
Delays and Tables

Syntax Type Description
mem S1 → S1 1-sample delay: y(t + 1) = x(t), y(0) = 0
@ S2 → S1 delay: y(t + x2(t)) = x1(t), y(t < x2(t)) = 0
rdtable S3 → S1 read-only table: y(t) = T [r(t)]
rwtable S5 → S1 read-write table: T [w(t)] = c(t); y(t) = T [r(t)]
select2 S3 → S1 select between 2 signals: T [] = {x0(t), x1(t)}; y(t) = T [s(t)]
select3 S4 → S1 select between 3 signals: T [] = {x0(t), x1(t), x2(t)}; y(t) = T [s(t)]

Faust Primitives
User Interface Primitives

Syntax Example
button(str) button("play")

checkbox(str) checkbox("mute")

vslider(str,cur,min,max,inc) vslider("vol",50,0,100,1)

hslider(str,cur,min,max,inc) hslider("vol",0.5,0,1,0.01)

nentry(str,cur,min,max,inc) nentry("freq",440,0,8000,1)

vgroup(str,block-diagram) vgroup("reverb", ...)

hgroup(str,block-diagram) hgroup("mixer", ...)

tgroup(str,block-diagram) vgroup("parametric", ...)

vbargraph(str,min,max) vbargraph("input",0,100)

hbargraph(str,min,max) hbargraph("signal",0,1.0)

Exercice 2: Adding rhythm and
sliders to the Djembe

Exercise 2: Adding rhythm to the Djembe

Faust Code:

import("stdfaust.lib");

process = button("play"), // try checkbox ("play")

ba.pulsen (100, 4800) : *

: pm.djembe (330 ,0.8 ,0.5 ,1);

Exercise 3: Adding sliders to the Djembe

Faust Code:

import("stdfaust.lib");

process = checkbox("play"),

ba.pulsen (100, 4800) : *

: pm.djembe(

hslider("freq", 300, 100, 1000, 1),

hslider("position", 0.8, 0, 1, 0.1),

hslider("sharpness", 0.5, 0, 1, 0.1),

hslider("gain" ,0.5,0,1,0.1)

);

Exercise 4: Adding an echo to the Djembe

Faust Code:

import("stdfaust.lib");

echo = +~(@(22100):*(hslider("fb" ,0 ,0,1,0.01)));

process = checkbox("play"),

ba.pulsen (100, 4800) : *

: pm.djembe(

hslider("freq", 300, 100, 1000, 1),

hslider("position", 0.8, 0, 1, 0.1),

hslider("sharpness", 0.5, 0, 1, 0.1),

hslider("gain" ,0.5,0,1,0.1)

)

: echo;

Programming by composition

Programming by Composition
Block-Diagram Algebra

Programming by patching is familiar to musicians :

Programming by Composition
Block-Diagram Algebra

Programming by patching, the ENIAC computer :

Programming by Composition
Block-Diagram Algebra

Block-diagrams are widely used in Visual Programming Languages
like Max/MSP:

Programming by Composition
Block-Diagram Algebra

Faust allows structured block-diagrams, here part of the zita
reverb.

allpass_combs(8) feedbackmatrix(8)

delayfilters(...1, 8, 0.1))))fbdelaylines(8)

zita_rev_fdn(...1, 8, 0.1))))(48000)

Programming by Composition
Composition Operations

(A<:B) split composition (associative, priority 1)

(A:>B) merge composition (associative, priority 1)

(A:B) sequential composition (associative, priority 2)

(A,B) parallel composition (associative, priority 3)

(A~B) recursive composition (priority 4)

Programming by Composition
Same Expression in Lambda-Calculus, FP and Faust

Lambda-Calculus
\x.\y.(x+y,x*y) 2 3

FP/FL (John Backus)

[+,*]:<2,3>

Faust
2,3 <: +,*

2

3

+

*

process

Figure: block-diagram of
2,3 <: +,*

Programming by Composition
A Very Simple Example

process = 1 : +~_;

1
+

process

y(t) =

{
0 t < 0
1 + y(t − 1) t ≥ 0

0 1 2 3 4-1-2-3-4

t

Programming by Composition
Parallel Composition (associative, priority 3)

The parallel composition (A,B) is probably the simplest one. It
places the two block-diagrams one on top of the other, without
connections.

(A,B): (Sn → Sm)→ (Sn′ → Sm′
)→ (Sn+n′ → Sm+m′

)

Figure: Example of parallel composition (10,*)

Programming by Composition
Sequential Composition (associative, priority 2)

The sequential composition (A:B) connects the outputs of A to
the corresponding inputs of B.

(A:B): (Sn → Sm)→ (Sm → Sp)→ (Sn → Sp)

Figure: Example of sequential composition ((*,/):+)

Programming by Composition
Split Composition (associative, priority 1)

The split composition (A<:B) operator is used to distribute the
outputs of A to the inputs of B

(A<:B): (Sn → Sm)→ (Sk.m → Sp)→ (Sn → Sp)

Figure: example of split composition ((10,20) <: (+,*,/))

Programming by Composition
Merge Composition (associative, priority 1)

The merge composition (A:>B) is used to connect several outputs
of A to the same inputs of B. Signals connected to the same input
are added.

(A:>B): (Sn → Sk.m)→ (Sm → Sp)→ (Sn → Sp)

Figure: example of merge composition ((10,20,30,40) :> *)

Programming by Composition
Recursive Composition (priority 4)

The recursive composition (A~B) is used to create cycles in the
block-diagram in order to express recursive computations.

(A~B): (Sn+n′ → Sm+m′
)→ (Sm′ → Sn′)→ (Sn → Sm+m′

)

Figure: example of recursive composition +(12345) ~ *(1103515245)

Faust Program

Faust Program

program

- statement�
�

�

-

A Faust program is essentially a list of statements. These statements can
be :

I metadata declarations,
I file imports
I definitions

Example :

declare name "noise";

declare copyright "(c)GRAME 2006";

import("music.lib");

process = noise * vslider("volume", 0, 0, 1, 0.1);

Definitions
Simple Definitions

definition

- identifier - =
���
- expression - ;

���
-

A definition associates an identifier with an expression it stands for.
Example :

random = +(12345) ~ *(1103515245);

Definitions
Functions’ definitions

definition

- identifier - (
���
- parameter�

� ,
���
�

�

-)
���
- =

���
- expression - ;
���
-

Definitions with formal parameters correspond to functions’ definitions.
Example :

linear2db(x) = 20* log10(x);

Alternative notation using a lambda-abstraction:

linear2db = \(x).(20* log10(x));

Definitions
Pattern Matching Definitions

definition

- identifier - (
���
- pattern�

� ,
���
�

�

-)
���
- =

���
- expression - ;
���
-

Formal parameters can also be full expressions representing patterns.
Example :

duplicate (1,exp) = exp;

duplicate(n,exp) = exp , duplicate(n-1,exp);

Alternative notation :

duplicate = case {

(1,exp) => exp;

(n,exp) => duplicate(n-1,exp);

};

Statement
Import file

fileimport

- import
�� �
- (

���
- filename -)
���
- ;

���
-

allows to import definitions from other source files.
for example import("math.lib"); imports the definitions from
"math.lib" file, a set of additional mathematical functions provided as
foreign functions.

Expressions
Environments

envexp

- expression - with
�� �
- lbrace - definition�

�
�

- rbrace�

�- environment
�� �
- lbrace - definition�

�
�

- rbrace

�- component
�� �
- (

���
- filename -)
���
�- library

�� �
- (
���
- filename -)

���
�- expression - .
���
- ident

�

-

Each Faust expression has an associated lexical environment

Environments
With Expression

withexpression

- expression - with
�� �
- lbrace - definition�

�
�

- rbrace -

With expression allows to specify a local environment, a private list of
definitions that will be used to evaluate the left hand expression
example pink noise filter :

pink = f : + ~ g with {

f(x) = 0.04957526213389*x

- 0.06305581334498* x@1

+ 0.01483220320740* x@2;

g(x) = 1.80116083982126*x

- 0.80257737639225* x@1;

};

Environments
Environment

environment

- environment
�� �
- lbrace - definition�

�
�

- rbrace -

an environment is used to group together related definitions :

constant = environment {

pi = 3.14159;

e = 2,718 ;

....

};

definitions of an environment can be easily accessed : constant.pi

Environments
Library

library

- library
�� �
- (

���
- filename -)
���
-

allows to create an environment by reading the definitions from a file.
example : library("filter.lib")

definitions are accesed like this : library("filter.lib").smooth

Environments
Component

component

- component
�� �
- (

���
- filename -)
���
-

allows to reuse a full Faust program as a simple expression.
example :

component("osc.dsp")<:component("freeverb.dsp")

equivalence between :

component("freeverb.dsp")

and

library("freeverb.dsp"). process

Expressions
Iterations

diagiteration

- par
�� �
- (

���
- ident - ,
���
- niter - ,

���
- expression -)
���
�

�- seq
�� �
- (

���
- ident - ,
���
- niter - ,

���
- expression -)
���
�- sum

�� �
- (
���
- ident - ,

���
- niter - ,
���
- expression -)

���
�- prod
�� �
- (

���
- ident - ,
���
- niter - ,

���
- expression -)
���

�

-

Iterations are analog to for(...) loops
provide a convenient way to automate some complex block-diagram
constructions.

Expressions
Iterations

The following example shows the use of seq to create a 10-bands filter:

process = seq(i, 10,

vgroup("band %i",

bandfilter(1000*(1+i))

)

);

Exercise 5: Djembe automation

Exercise 5: Djembe automation

Faust Code:

import("stdfaust.lib");

saw(f) = f/ma.SR : (+,1: fmod)~_;

process = checkbox("play"),

ba.pulsen (100, 4800) : *

: pm.djembe(

hslider("freq", 300, 100, 1000, 1),

saw(hslider("fpos" ,1 ,0.05 ,20 ,0.01)) ,

saw(hslider("fsharp" ,1 ,0.05 ,20 ,0.01)) ,

saw(hslider("fgain" ,1 ,0.05 ,20 ,0.01))

)

;

Faust Ecosystem

Faust Ecosystem
Overview

faust
command line compiler

(lin, osx)

faust2puredata
faust2max6
faust2vst
faust2android
faust2ios
…
command line builders

FaustWorks
IDE

(lin, osx)

FaustLive
IDE with embedded Faust compiler

(lin, osx, win)

faustgen~
embedded Faust compiler for max

(osx, win)

http://faust.grame.fr/index.
php/online-examples

Online IDE
(any browser)

http://faustservice.grame.fr/
Compiler API

(used by FaustLive)

local tools web servers

faustcompile
embedded Faust compiler for csound6

(lin, osx, win)

http://faust.grame.fr/www/faustplayground
Simplified Faust programming

Embedded Compiler

faust4processing
embedded Faust compiler for

Processing (lin, osx, win)

Faust Ecosystem
Command-line Tools

Simplify the compilation workflow : full automated process to build
Android and iOS applications, VST plugins, Max/MSP externals,
Csound opcodes, etc.

Faust Ecosystem
FaustWorks

FaustWorks can simplify Faust learning in particular by providing
”realtime” code and diagram generation:

Faust Ecosystem
FaustLive

FaustLive speeds up the Edit/Compile/Run. It provides advanced
cooperation features :

Faust Ecosystem
Faustgen

Faustgen speeds up the Edit/Compile/Run within the Max
framework:

Faust Ecosystem
Faust4processing

Faust4processing provides an embedded Faust compiler for
Processing:

Faust Ecosystem
PMIX (Oliver Larkin)

PMIX speeds up the Edit/Compile/Run within VST host:

Faust Ecosystem
Online compiler

The Online compiler can be used from a web browser to compile
Faust programs for a variety of systems, including the Web.
http://faust.grame.fr/onlinecompiler

http://faust.grame.fr/onlinecompiler

Faust Ecosystem
Faust playground

The Web as a gigantic Lego box to reuse and recompose audio
applications. http://faust.grame.fr/faustplayground

http://faust.grame.fr/faustplayground

Thanks! Questions?

	Primitives
	Faust Program
	Definitions
	expressions
	Environment expressions

