Notes

10 min presentation, 10 min demo
see more in presentation notes below

Real-Time Interactive
Music In Haskell

Paul Hudak, Donya Quick,
Mark Santolucito, Daniel Winograd-Cort

Yale UV

EEEEEEEEEEEEEEEEEEE

Functional Reactive Programming

- Used for time-varying systems

- Abstraction of time fits music well
- Simple and concise code
- Works well in a classroom setting
- Rapid prototyping

Euterpea

- Arrowized-FRP EDSL for computer music
- Written in Haskell

- Provides:
- Realtime MIDI production
- Built-in MIDI I/O

- Waveform manipulation and synthesis

The Haskell School of Music

— From Signals to Symphonies —

Paul Hudak

Yale University
Department of Computer Science

[euterpea.com

Learn

There are lots of resources to learn Euterpea. The most developed is the textbook,
Haskell School of Music by Paul Hudak. It is freely available online from the Yale
Haskell Group. Every year a course is taught at Yale about Computer Music using
Euterpea. Homework assignments can be viewed on the course website. For more
offical documentation you can check the Hackage page, or view the lastest version on
github.

We are also developing some tutorials so you can learn by example here. In addition to
some bite size walkthroughs, we will also be posting user submitted code. If you make
something you would like us to show off, just email Mark the source file!

Code

midi/basics.lhs
midi/Lecture6.lhs
midi/chorale.lhs
midi/scales.lhs
midi/rhythm.lhs
examples/dub.lhs
examples/BabaORiley.lhs

Real-time Interactive Music

- Tidal, live coding in ghci
- Supercollider, imperative commands
- Csound, written in C

- We would like this for FRP (in Haskell)

Real-time Interactive Music

- Euterpea has poor support for this.

- Naively connecting a GUI can lead to:
- High audio latency
- Unpredictable performance
- Also, ad-hoc inter-library connections are:

- Not extensible
- Difficult to maintain

Media Modules

- Different media types on different threads
- No data rate bottlenecks, even with varying rates

- Easy interlibrary communication
- Abstraction agnostic

Media Modules: Intermedia Systems in a Pure Functional Paradigm, ICMC 2015, Mark Santolucito,
Donya Quick, and Paul Hudak

Media Modules

- We made an attempt at a universal FRP
API:

Media Modules

- We made an attempt at a universal FRP

API:
- A generic Arrow type that supports 10

class Arrow a => ArrowlIO a where
1iftATO :: (b -> IO c¢) -> a b c

type IOAuto = Automaton (Kleisli I0)

Media Modules

- We made an attempt at a universal FRP

API:

- A generic Arrow type that supports 10
- Asynchronous inter-library operators

asyncCIO :: (ArrowIO a, NFData c) =>
(IO d, d => I0 ())
-> (d -> IOAuto b c¢)
-> a b [c]

Media Modules

- We made an attempt at a universal FRP

API:

- A generic Arrow type that supports 10
- Asynchronous inter-operative operators

- We built these concepts into the FRP GUI
library UISF.

Connecting UISF and Euterpea

- Euterpea builds a UISF widget for midiOut:
mi1diOut :: ArrowIO a =>

a (OutputDevicelD, [MidiMessage]) ()

midiOut = 11ftAIO action where
action (dev, mm) = do
outputMidi dev
forM mm (\m -> deliverMidi dev (0, m))

Connecting UISF and Euterpea

- Now we lift that asynchronously to UISF:

asyncMidi :: NFData c =>
PureAuto b ((OutputDevicelD, [MidiMessage]), Int, c)
-> UISF b [c]
asyncMidi sf = asyncCIO (return (), const $ return ()) sf
where sf = proc b -> do
(mdata, t, c) <- 1liftAutoIO sf -< Db
midiOut -< mdata
11ftAIO threadDelay -< t

returnA -< C

Demo: UISF + Euterpea

- Media module design allows seamless

operation.
- The system overcomes performance issues.
- Underlying design remains pure and simple.
- Our demo stress tests the ideas.

- Multi-part Ul
- Hard music from Kullita

Grammar-based automated music composition in Haskell, FARM 2013, Donya Quick and Paul Hudak

Demo: Elerea + Euterpea

- We took a similar approach with Elerea.

- It's currently less polished,
- But we get good performance and clean code.

Future Work

- Formalize the media module API.
- How can we make different media libraries inter-
operate easily and efficiently?

- Retrofit more libraries into media modules.
- Extend the inter-operability to other media systems.

- Talk to us about how we can incorporate your
system!

Conclusions

- Euterpea and UISF work together easily.

- They retain a relatively pure, functional style.
- A great tool for teaching functional computer music.

- We encourage users to play with the system:
- euterpea.com
- haskell.cs.yale.edu
- cabal install euterpea
- cabal install uisf

/ Music Generator \

Thread 1
[MIDI Input) T Neasge >(User Interface]
Devices J
Drum pattern,
in buffer, etc. ' Thread 2

MIDI Output MIDI messages (Music Generation
Devices L with Euterpea /

