
Notes

10 min presentation, 10 min demo
see more in presentation notes below

Real-Time Interactive
Music In Haskell
Paul Hudak, Donya Quick,

Mark Santolucito, Daniel Winograd-Cort

Functional Reactive Programming

- Used for time-varying systems

- Abstraction of time fits music well
- Simple and concise code
- Works well in a classroom setting
- Rapid prototyping

Euterpea

- Arrowized-FRP EDSL for computer music
- Written in Haskell
- Provides:

- Realtime MIDI production
- Built-in MIDI I/O
- Waveform manipulation and synthesis

Real-time Interactive Music

- Tidal, live coding in ghci
- Supercollider, imperative commands
- Csound, written in C

- We would like this for FRP (in Haskell)

Real-time Interactive Music

- Euterpea has poor support for this.
- Naively connecting a GUI can lead to:

- High audio latency
- Unpredictable performance

- Also, ad-hoc inter-library connections are:
- Not extensible
- Difficult to maintain

Media Modules

- Different media types on different threads
- No data rate bottlenecks, even with varying rates

- Easy interlibrary communication
- Abstraction agnostic

Media Modules: Intermedia Systems in a Pure Functional Paradigm, ICMC 2015, Mark Santolucito,
Donya Quick, and Paul Hudak

Media Modules

- We made an attempt at a universal FRP
API:

Media Modules

- We made an attempt at a universal FRP
API:
- A generic Arrow type that supports IO

class Arrow a => ArrowIO a where
 liftAIO :: (b -> IO c) -> a b c

type IOAuto = Automaton (Kleisli IO)

Media Modules

- We made an attempt at a universal FRP
API:
- A generic Arrow type that supports IO
- Asynchronous inter-library operators

asyncCIO :: (ArrowIO a, NFData c) =>

 (IO d, d -> IO ())

 -> (d -> IOAuto b c)

 -> a b [c]

Media Modules

- We made an attempt at a universal FRP
API:
- A generic Arrow type that supports IO
- Asynchronous inter-operative operators

- We built these concepts into the FRP GUI
library UISF.

Connecting UISF and Euterpea

- Euterpea builds a UISF widget for midiOut:
midiOut :: ArrowIO a =>

 a (OutputDeviceID, [MidiMessage]) ()

midiOut = liftAIO action where
 action (dev, mm) = do
 outputMidi dev

 forM_ mm (\m -> deliverMidi dev (0, m))

Connecting UISF and Euterpea

- Now we lift that asynchronously to UISF:
asyncMidi :: NFData c =>

 PureAuto b ((OutputDeviceID, [MidiMessage]), Int, c)

 -> UISF b [c]

asyncMidi sf = asyncCIO (return (), const $ return ()) sf

 where sf = proc b -> do

 (mdata, t, c) <- liftAutoIO sf -< b

 midiOut -< mdata

 liftAIO threadDelay -< t

 returnA -< c

Demo: UISF + Euterpea

- Media module design allows seamless
operation.
- The system overcomes performance issues.
- Underlying design remains pure and simple.

- Our demo stress tests the ideas.
- Multi-part UI
- Hard music from Kullita

Grammar-based automated music composition in Haskell, FARM 2013, Donya Quick and Paul Hudak

Demo: Elerea + Euterpea

- We took a similar approach with Elerea.
- It’s currently less polished,
- But we get good performance and clean code.

- Formalize the media module API.
- How can we make different media libraries inter-

operate easily and efficiently?
- Retrofit more libraries into media modules.

- Extend the inter-operability to other media systems.
- Talk to us about how we can incorporate your

system!

Future Work

Conclusions

- Euterpea and UISF work together easily.
- They retain a relatively pure, functional style.
- A great tool for teaching functional computer music.

- We encourage users to play with the system:
- euterpea.com
- haskell.cs.yale.edu
- cabal install euterpea
- cabal install uisf

