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Composer Is a simple, responsive and extensible sy
utilising logic programming to allow novices to explc
and learn music rules
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¥Anders: Composing music by composing rules (Ph.D. thesis)

¥Koops, Magalh<«e and de Haas:A functional approach to automatic melody harmonisation

¥Aaron, Blackwell, Hoadley and Regan: A principled approach to developing new languages for live coding
¥Stead, Blackwell and Aarong: Graphic score grammars for end-users
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(run* [notes]
(scaleo :C3 major-scale notes)
(counto notes 8))

.. => ([[C3 :D3 :E3 :F3 :G3 :A3 :B3 :C4))

(run 3 M1 m2 m3 m4 m5 m6 m7 m8]j
(fresh [n1 N2 N3 n4 n5 n6 n7 n§]
(scaleo :C3 major-scale
N1 n2 n3 n4 n5 n6 n7 n8))
(permuteo (M1 M2 m3 m4 m5 m6 m7 n
[Nl n2 n3 n4 n5 n6 n7 n8))
(== ml :C3)
(== m8 :C4)))
. => ([:C3 D3 :E3 :F3 :G3 :A3 :B3 :C4]
- [(C3 :E3 D3 :F3 :G3 :A3 :B3 :C4]
- [:C3 :F3 :D3 :E3 :G3 :A3 :B3 :C4))



Logic programming

(run* [notes]

(scaleo :C3 major-scale notes)
(counto notes 8))

.. => ([[C3 :D3 :E3 :F3 :G3 :A3 :B3 :C4))

(run 3 M1 m2 m3 m4 m5 m6 m7 m8]j
(fresh [n1 N2 N3 n4 n5 n6 n7 n§]
(scaleo :C3 major-scale
N1 n2 n3 n4 n5 n6 n7 n8))
(permuteo (M1 M2 m3 m4 m5 m6 m7 n
[Nl n2 n3 n4 n5 n6 n7 n8))
(== ml :C3)
(== m8 :C4)))
. => ([:C3 D3 :E3 :F3 :G3 :A3 :B3 :C4]
- [(C3 :E3 D3 :F3 :G3 :A3 :B3 :C4]
- [:C3 :F3 :D3 :E3 :G3 :A3 :B3 :C4))

(run* [tonic-note pattern]
(scaleo tonic-note pattern
[:C3 D3 :E3 :F3 :G3 :A3 B3 :C4)]))
5, =>(C3(101011010212011. _0)



(ns composer.composer
(:refer-clojure :exclude [==])
(:require [clojure.core.async :refer [go >! <I]]
[clojure.core.logic :refer :all]
[clojure.core.logic.pldb :refer :alll))

(defn scale-from-tones [tone-types]
(take 25
(->> tone-types
(map {:semitone [1]

ctone [0 1]
:minor-third [0 0 1]1})
flatten
butlast
(cons 1)
cycle)))

(def major-scale
(scale-from-tones
[:tone :tone :semitone :tone :tone :tone :semitone]))
(def harmonic-minor-scale
(scale-from-tones
[:tone :semitone :tone :tone :semitone :minor-third :semitone]))
(def natural-minor-scale
(scale-from-tones
[:tone :semitone :tone :tone :semitone :tone :tone]))
(def locrian-mode
(scale-from-tones
[:semitone :tone :tone :semitone :tone :tone :tone]))
(def mixolydian-mode
(scale-from-tones
[:tone :tone :semitone :tone :tone :semitone :tone]))

(def scale-modes

[[:major-scale major-scale]

[:harmonic-minor-scale
[:natural-minor-scale
[:locrian-mode
[:mixolydian-mode

harmonic-minor-scale]
natural-minor-scale]
locrian-mode]
mixolydian-mode]])

(db-rel semitone note-1 note-2)

(def keys-from-c
[:C3 :C#3 :D3 :D#3 :E3 :F3 :F#3 :G3 :G#3 :A3 :A#3 :B3
:C4 :C#H4 -D4 :D#4 :E4 :F4 :F#4 -G4 :GH#4 :A4 -A#4 :B4
:C5)

(def semitone-facts
(reduce
(fn [db [note-1 note-2]]
(db-fact db semitone note-1 note-2))
empty-db
(partition 2 1 keys-from-c)))

(defne scaleo [base-note scale notes]
([note [1 . scale-rest] [note . Q1D
([note [1 . scale-rest] [note . notes-rest]]
(fresh [next-note]
(semitone note next-note)
(scaleo next-note scale-rest notes-rest)))
([note [0 . scale-rest] notes]
(fresh [next-note]
(semitone note next-note)
(scaleo next-note scale-rest notes))))

(defn key-restriction
[instrument-state s1]
(if-let [key (:key instrument-state)]
(all (== key s1))
succeed))

(defn scale-restriction
[instrument-state scale-type]
(if (:scale instrument-state)

(all (membero [(:scale instrument-state) scale-type] scale-modes))

succeed))

(defn cadence-restriction
[instrument-state m7 s2 s4 s5]
(case (:cadence instrument-state)

perfect (all (== m7 s5))
:plagal all (== m7 s4))
sjust-nice (all (== m7 s2))
nil succeed))

(defn- logic-program
[instrument-state melody2]
(fresh [melody
ml m2 m3 m4 m5 m6 m7 m8
scale
sl s2 s3 s4 s5 s6 s7 s8
base-note scale-type]
(key-restriction instrument-state sl)
(== melody [m1 m2 m3 m4 m5 m6 m7 m8])
scale [sl s2 s3 s4 s5 s6 s7 s8])
(== ml s1)
(== m8 s8)
(cadence-restriction instrument-state m7 s2 s4 sb5)
(== melody2 [m1 m2 m3 m4 m5 m6 m7 ml])
(scale-restriction instrument-state scale-type)
(scaleo base-note scale-type scale)
(permuteo scale melody)))

C programming

(defn compositions
[instrument-state & [n]]
(with-db
semitone-facts
(ifn
(run n [melody2]
(logic-program instrument-state melody2))
(run* [melody2]
(logic-program instrument-state melody2)))))

(defn- random-composition
[instrument-state]
(rand-nth
(or (seq (compositions instrument-state 1024))

[OD»
;53 Loop

(defn- same-melody-params?
[instrument-state-1 instrument-state-2]
(let [non-melody-keys [:speed :gaps]]
(= (apply dissoc instrument-state-1 non-melody-keys)
(apply dissoc instrument-state-2 non-melody-keys))))

(defn composer-loop

"Listens for new instrument states on instrument-state-ch and emits a

random melody to melody-ch. The loop terminates when
instrument-state-ch closes.

Changes to :speed or :gaps does not compose a new melody, but alters

the timing of the existing."
[instrument-state-ch melody-ch]
(go
(loop [prev-instrument-state nil
prev-composition nil]

(when-let [instrument-state (<! instrument-state-ch)]

(let [gaps (for [i (range 8)] (get (:gaps instrument-state) i 0.5))

speed (:speed instrument-state)

new-melody (if (same-melody-params? prev-instrument-state
instrument-state)
(:melody prev-composition)
(random-composition instrument-state))
new-composition {:gaps gaps
:speed speed
:melody new-melody}]
(! melody-ch new-composition)
(recur instrument-state
new-composition))))))
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Experiments

¥ Goal: a reactive system

¥ Experiment 1:What is the size of the
melody space and how long does it take
enumerate it?

¥ Experiment 2:What is a reasonable bour
on the search space to achieve
responsiveness?



Experiment 1

No scale

Major scale

Any tonic note C Any tonic note C
— pC — pC — pc — pC
Melody space 25° 25 | 25° 25° | 9,360 1,560 720 120
Execution time (ms) — — — -1 4,299 3852 294 278
— — - | 2,177 404 | 2,448 431

Melodies/second



Execution time (ms)
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Experiment 2

e, any tonic note, any cadence

e, C, any cadence
e, C, perfect cadence

32

128 512 2048

Search space bound

8192

32768



Conclusion

¥ Composer demonstrates it is possible to
build a responsive interactive system wit
extremely small and succinct core

¥ The declarative nature of the core
Implementation makes it possible to exte
the terminology to other types of music



Future work

¥ Proper sampling of search space
¥ Labeled interface

¥ Non-Western music

¥ User testing



