Exploring Melody Space In
Live Context Using Declarati

Functional Programming

FARM Workshop at ICFP 2014, Gothenburg
Thomas G. Kristensen, uSwitch Ltd, London



Composer Is a simple, responsive and extensible sy
utilising logic programming to allow novices to explc
and learn music rules



Background



Background

off3ine

online



Background

programmers musicians

off3ine

online



off3ine

online

Background

programmers

musiclans

0
L

(D
>




off3ine

online

Background

programmers

musiclans

Shasheela

(D
>




off3ine

online

Background

programmers

musiclans

Shasheela

=
>




Background

programmers musicians

off3ine Shasheela FHarm

Principled

online approach




Background

programmers musicians

off3ine Shasheela FHarm

Principled
approach

Graphical

online core gramm




Background

programmers musicians

off3ine Shasheela FHarm

Principled
approach

Graphical

online core gramm

¥Anders: Composing music by composing rules (Ph.D. thesis)

¥Koops, Magalh<«e and de Haas:A functional approach to automatic melody harmonisation

¥Aaron, Blackwell, Hoadley and Regan: A principled approach to developing new languages for live coding
¥Stead, Blackwell and Aarong: Graphic score grammars for end-users



Melody rules

¥ Tonic note
¥ Mode
¥ Cadence




Melody rules

¥ Tonic note
¥ Mode
¥ Cadence




Architecture

JVM

Instrument state
loop

OSC listener Composer loop

L ;

OSC server Overtone loop

f

v v
{ o} SuperCollider




Architecture

JVM

Instrument state

loop
7 /‘\ N
& RN

OSC listener Composer loop

I

L '

v
OSC server Overtone loop

A

OEC

||

v

L

A4

SuperCollider




Logic programming



Logic programming

(run* [notes]
(scaleo :C3 major-scale notes)
(counto notes 8))

.. => ([[C3 :D3 :E3 :F3 :G3 :A3 :B3 :C4))



Logic programming

(run* [notes]
(scaleo :C3 major-scale notes)
(counto notes 8))

.. => ([[C3 :D3 :E3 :F3 :G3 :A3 :B3 :C4))

(run 3 M1 m2 m3 m4 m5 m6 m7 m8]j
(fresh [n1 N2 N3 n4 n5 n6 n7 n§]
(scaleo :C3 major-scale
N1 n2 n3 n4 n5 n6 n7 n8))
(permuteo (M1 M2 m3 m4 m5 m6 m7 n
[Nl n2 n3 n4 n5 n6 n7 n8))
(== ml :C3)
(== m8 :C4)))
. => ([:C3 D3 :E3 :F3 :G3 :A3 :B3 :C4]
- [(C3 :E3 D3 :F3 :G3 :A3 :B3 :C4]
- [:C3 :F3 :D3 :E3 :G3 :A3 :B3 :C4))



Logic programming

(run* [notes]

(scaleo :C3 major-scale notes)
(counto notes 8))

.. => ([[C3 :D3 :E3 :F3 :G3 :A3 :B3 :C4))

(run 3 M1 m2 m3 m4 m5 m6 m7 m8]j
(fresh [n1 N2 N3 n4 n5 n6 n7 n§]
(scaleo :C3 major-scale
N1 n2 n3 n4 n5 n6 n7 n8))
(permuteo (M1 M2 m3 m4 m5 m6 m7 n
[Nl n2 n3 n4 n5 n6 n7 n8))
(== ml :C3)
(== m8 :C4)))
. => ([:C3 D3 :E3 :F3 :G3 :A3 :B3 :C4]
- [(C3 :E3 D3 :F3 :G3 :A3 :B3 :C4]
- [:C3 :F3 :D3 :E3 :G3 :A3 :B3 :C4))

(run* [tonic-note pattern]
(scaleo tonic-note pattern
[:C3 D3 :E3 :F3 :G3 :A3 B3 :C4)]))
5, =>(C3(101011010212011. _0)



(ns composer.composer
(:refer-clojure :exclude [==])
(:require [clojure.core.async :refer [go >! <I]]
[clojure.core.logic :refer :all]
[clojure.core.logic.pldb :refer :alll))

(defn scale-from-tones [tone-types]
(take 25
(->> tone-types
(map {:semitone [1]

ctone [0 1]
:minor-third [0 0 1]1})
flatten
butlast
(cons 1)
cycle)))

(def major-scale
(scale-from-tones
[:tone :tone :semitone :tone :tone :tone :semitone]))
(def harmonic-minor-scale
(scale-from-tones
[:tone :semitone :tone :tone :semitone :minor-third :semitone]))
(def natural-minor-scale
(scale-from-tones
[:tone :semitone :tone :tone :semitone :tone :tone]))
(def locrian-mode
(scale-from-tones
[:semitone :tone :tone :semitone :tone :tone :tone]))
(def mixolydian-mode
(scale-from-tones
[:tone :tone :semitone :tone :tone :semitone :tone]))

(def scale-modes

[[:major-scale major-scale]

[:harmonic-minor-scale
[:natural-minor-scale
[:locrian-mode
[:mixolydian-mode

harmonic-minor-scale]
natural-minor-scale]
locrian-mode]
mixolydian-mode]])

(db-rel semitone note-1 note-2)

(def keys-from-c
[:C3 :C#3 :D3 :D#3 :E3 :F3 :F#3 :G3 :G#3 :A3 :A#3 :B3
:C4 :C#H4 -D4 :D#4 :E4 :F4 :F#4 -G4 :GH#4 :A4 -A#4 :B4
:C5)

(def semitone-facts
(reduce
(fn [db [note-1 note-2]]
(db-fact db semitone note-1 note-2))
empty-db
(partition 2 1 keys-from-c)))

(defne scaleo [base-note scale notes]
([note [1 . scale-rest] [note . Q1D
([note [1 . scale-rest] [note . notes-rest]]
(fresh [next-note]
(semitone note next-note)
(scaleo next-note scale-rest notes-rest)))
([note [0 . scale-rest] notes]
(fresh [next-note]
(semitone note next-note)
(scaleo next-note scale-rest notes))))

(defn key-restriction
[instrument-state s1]
(if-let [key (:key instrument-state)]
(all (== key s1))
succeed))

(defn scale-restriction
[instrument-state scale-type]
(if (:scale instrument-state)

(all (membero [(:scale instrument-state) scale-type] scale-modes))

succeed))

(defn cadence-restriction
[instrument-state m7 s2 s4 s5]
(case (:cadence instrument-state)

perfect (all (== m7 s5))
:plagal all (== m7 s4))
sjust-nice (all (== m7 s2))
nil succeed))

(defn- logic-program
[instrument-state melody2]
(fresh [melody
ml m2 m3 m4 m5 m6 m7 m8
scale
sl s2 s3 s4 s5 s6 s7 s8
base-note scale-type]
(key-restriction instrument-state sl)
(== melody [m1 m2 m3 m4 m5 m6 m7 m8])
scale [sl s2 s3 s4 s5 s6 s7 s8])
(== ml s1)
(== m8 s8)
(cadence-restriction instrument-state m7 s2 s4 sb5)
(== melody2 [m1 m2 m3 m4 m5 m6 m7 ml])
(scale-restriction instrument-state scale-type)
(scaleo base-note scale-type scale)
(permuteo scale melody)))

C programming

(defn compositions
[instrument-state & [n]]
(with-db
semitone-facts
(ifn
(run n [melody2]
(logic-program instrument-state melody2))
(run* [melody2]
(logic-program instrument-state melody2)))))

(defn- random-composition
[instrument-state]
(rand-nth
(or (seq (compositions instrument-state 1024))

[OD»
;53 Loop

(defn- same-melody-params?
[instrument-state-1 instrument-state-2]
(let [non-melody-keys [:speed :gaps]]
(= (apply dissoc instrument-state-1 non-melody-keys)
(apply dissoc instrument-state-2 non-melody-keys))))

(defn composer-loop

"Listens for new instrument states on instrument-state-ch and emits a

random melody to melody-ch. The loop terminates when
instrument-state-ch closes.

Changes to :speed or :gaps does not compose a new melody, but alters

the timing of the existing."
[instrument-state-ch melody-ch]
(go
(loop [prev-instrument-state nil
prev-composition nil]

(when-let [instrument-state (<! instrument-state-ch)]

(let [gaps (for [i (range 8)] (get (:gaps instrument-state) i 0.5))

speed (:speed instrument-state)

new-melody (if (same-melody-params? prev-instrument-state
instrument-state)
(:melody prev-composition)
(random-composition instrument-state))
new-composition {:gaps gaps
:speed speed
:melody new-melody}]
(! melody-ch new-composition)
(recur instrument-state
new-composition))))))



The system



The system




Experiments

¥ Goal: a reactive system

¥ Experiment 1:What is the size of the
melody space and how long does it take
enumerate it?

¥ Experiment 2:What is a reasonable bour
on the search space to achieve
responsiveness?



Experiment 1

No scale

Major scale

Any tonic note C Any tonic note C
— pC — pC — pc — pC
Melody space 25° 25 | 25° 25° | 9,360 1,560 720 120
Execution time (ms) — — — -1 4,299 3852 294 278
— — - | 2,177 404 | 2,448 431

Melodies/second



Execution time (ms)

100000

10000

1000

O
O

O

No scale
Major sca

Major sca

Major sca

Experiment 2

e, any tonic note, any cadence

e, C, any cadence
e, C, perfect cadence

32

128 512 2048

Search space bound

8192

32768



Conclusion

¥ Composer demonstrates it is possible to
build a responsive interactive system wit
extremely small and succinct core

¥ The declarative nature of the core
Implementation makes it possible to exte
the terminology to other types of music



Future work

¥ Proper sampling of search space
¥ Labeled interface

¥ Non-Western music

¥ User testing



