.

Usmg Haskell as DSL for controllmg

| |mmer5|ve medla experlences

o , ,FARM '20’14
i 2014-09-06

4

4

4

Outline

What is LARP?

What was The Monitor Celestra?
Technological support systems
Immersive sound

Haskell: strengths and drawbacks

Sound system in action

4

4

4

4

What is LARP?

A collaborative storytelling game

Plays in real time, in a joint physical area
Players wear costumes, use props

No spectators: to see Is to participate

All genres

Geographic variations in style

Nordic LARP

» Nordic LARP style is characterized by eep
immersion and player control

» Faithful and complete representation of game
world highly valued

» “Railroading” and excessive rules control strongly
discouraged

The Monitor Celestra

» Nordic LARP held in 3 repeated games, March
2013.

» Played in the fictional setting of Battlestar Galactica

» The WW2 Destroyer Smaland was rented and
remodeled to give an immersive impression of a
space ship interior

4

4

4

4

4

Immersion supported by
technical aids

Laser-cut computer control terminal fronts
Laser-cut personal dogtags

Replacing all existing sighage

Visual design

Designed soundscapes

Soundscapes

» The ship was anchored in Gothenburg harbor: city
sounds leaked in

» Full immersion was assisted by creating custom
soundscapes on board

Sound System

Custom Build Sound Distribution and synchronization system

Built to withstand system failure

Real Time mixing of parameterized ambience creating a dynamic
soundtrack for the game

Creates an ambient feeling of the ship and its state

enables sound to travel through the ship with millisecond
synchronization creating a feeling of localized sound

Sound System - Hardware

» One dedicated Raspberry Pie for each pair of speakers
» network attached

» real time monitoring

Architecture

Physical

Interface

Console
Client /
Controller

AM Wired Network

A4

C-EWD
Game Server

SoundServer - =

Game Mastering

Game Visualization Game Archiving

Speakers

Sound Daemon

Types work for us

Declare datatypes to encode all structures

Declare translation functions to dig deeper into the
communication stack

Use automatic JSON encoding and parsing

SoundCommand

|

sSoundsSpec

Daemonspec

|

FilterSpec

DaemonCommand

|

AMQPDaemon

SoundCommand

» Commands that can be given to the sound
specification system

» Define a sound scape

» Save / Restore from database
» Diagnostics

» Execute specific sound

» Trigger sound on events

» Chain commands — Monoid structure

SoundSpec

» Descriptions of Sound Scapes

4

4

4

Play, Loop, Stop or Modify a Sound File
Crossfade

Pick Loudspeaker with indexing

Pick Loudness & Left/Right balance

Include a delay before command starts

FilterSpec

» Collection of regular expression rules to trigger
actions on messages in AMQP queue

» Allows automatic reactions to player devices: “Load
Torpedo” automatically creates torpedo loading
noises

DaemonSpec

» Translates the Play/Loop/Fade/... commands in a

SoundSpec into the primitives used for the lower
level sound system:

Play, Loop, Stop, Change

DaemonCommand

» Wrapper around DaemonSpec that creates JSON
messages optimized for parsing by lower level
sound system.

AMQPDaemon

» Wrapper to package a DaemonCommand in an
AMQP message for delivery to lower level sound
system

This is where the demo
would have been...

» Discovered yesterday that the surrounding system
doesn’t work with the MacOSX stock rubyl.8.

» Not able to show the system in action

Lessons Learned

» Several of our ambitions did not come through:
» Creative staff never wrote any code

» Overall system fragile to rebuilds outside exact
controlled (version by version) layout

» Sporadic and untraced performance issues at
launch: delays in sound reactions

» Communication issues between creative and tech
groups
“You need Stereo sound to play it stereo?”
— discovered after 1 full game round

Lessons Learned

» Other ambitions turned out exactly as hoped for

4

Very quick development and debugging
turnarounds

Comfortably specified embedded DSL

Easy to use Haskell primitives to speed up
sound specification

