
Using Haskell as DSL for controlling 
immersive media experiences 


!

FARM 2014

2014-09-06



Outline
‣ What is LARP?

‣ What was The Monitor Celestra?

‣ Technological support systems

‣ Immersive sound

‣ Haskell: strengths and drawbacks

‣ Sound system in action



What is LARP?
‣ A collaborative storytelling game

‣ Plays in real time, in a joint physical area

‣ Players wear costumes, use props

‣ No spectators: to see is to participate

‣ All genres

‣ Geographic variations in style



Nordic LARP

‣ Nordic LARP style is characterized by eep 
immersion and player control


‣ Faithful and complete representation of game 
world highly valued


‣ “Railroading” and excessive rules control strongly 
discouraged



The Monitor Celestra

‣ Nordic LARP held in 3 repeated games, March 
2013.


‣ Played in the fictional setting of Battlestar Galactica

‣ The WW2 Destroyer Småland was rented and 

remodeled to give an immersive impression of a 
space ship interior





Immersion supported by 
technical aids

‣ Laser-cut computer control terminal fronts

‣ Laser-cut personal dogtags

‣ Replacing all existing signage

‣ Visual design

‣ Designed soundscapes



Soundscapes

‣ The ship was anchored in Gothenburg harbor: city 
sounds leaked in


‣ Full immersion was assisted by creating custom 
soundscapes on board



Sound System
‣ Custom Build Sound Distribution and synchronization system


‣ Built to withstand system failure


!

‣ Real Time mixing of parameterized ambience creating a dynamic 
soundtrack for the game


‣ Creates an ambient feeling of the ship and its state


‣ enables sound to travel through the ship with millisecond 
synchronization creating a feeling of localized sound



Sound System - Hardware

‣ One dedicated Raspberry Pie for each pair of speakers


‣ network attached


‣ real time monitoring



Architecture



Console 
Client / 

Controller

Physical 
Interface

Console 
Client / 

Controller

Physical 
Interface

Console 
Client / 

Controller

Physical 
Interface

C-EWD
Game Server

Sound Daemon

SoundServer

Game Mastering

Speakers

Wired Network

Redis

Console 
Client / 

Controller

Physical 
Interface

AMQP

Game Log

Game Visualization Game Control Game Archiving



Types work for us

‣ Declare datatypes to encode all structures

‣ Declare translation functions to dig deeper into the 

communication stack

‣ Use automatic JSON encoding and parsing



..SoundCommand. SoundSpec.

FilterSpec

.

DaemonSpec

.

DaemonCommand

.

AMQPDaemon



SoundCommand
‣ Commands that can be given to the sound 

specification system

‣ Define a sound scape

‣ Save / Restore from database

‣ Diagnostics

‣ Execute specific sound

‣ Trigger sound on events

‣ Chain commands — Monoid structure



SoundSpec
‣ Descriptions of Sound Scapes


‣ Play, Loop, Stop or Modify a Sound File

‣ Crossfade

‣ Pick Loudspeaker with indexing

‣ Pick Loudness & Left/Right balance

‣ Include a delay before command starts



FilterSpec

‣ Collection of regular expression rules to trigger 
actions on messages in AMQP queue


‣ Allows automatic reactions to player devices: “Load 
Torpedo” automatically creates torpedo loading 
noises



DaemonSpec

‣ Translates the Play/Loop/Fade/... commands in a 
SoundSpec into the primitives used for the lower 
level sound system:  
Play, Loop, Stop, Change



DaemonCommand

‣ Wrapper around DaemonSpec that creates JSON 
messages optimized for parsing by lower level 
sound system.



AMQPDaemon

‣ Wrapper to package a DaemonCommand in an 
AMQP message for delivery to lower level sound 
system



This is where the demo 
would have been…

‣ Discovered yesterday that the surrounding system 
doesn’t work with the MacOSX stock ruby1.8.


‣ Not able to show the system in action



Lessons Learned
‣ Several of our ambitions did not come through:


‣ Creative staff never wrote any code

‣ Overall system fragile to rebuilds outside exact 

controlled (version by version) layout

‣ Sporadic and untraced performance issues at 

launch: delays in sound reactions

‣ Communication issues between creative and tech 

groups  
“You need Stereo sound to play it stereo?” 
— discovered after 1 full game round



Lessons Learned

‣ Other ambitions turned out exactly as hoped for

‣ Very quick development and debugging 

turnarounds

‣ Comfortably specified embedded DSL

‣ Easy to use Haskell primitives to speed up 

sound specification



So Say We All


