

Grammar-Based Automated
Music Composition in Haskell

Donya Quick and Paul Hudak
Yale University

Department of Computer Science

FARM 2013

1/18

All You Need To Know About Music
● A chord is a collection of simultaneous pitches.

– Roman numerals I - VII are abstract chords.

● Many ways to interpret them musically.
● Interpretation depends on key/mode.

– Concrete chords are what appear on scores.

3 different concrete chords,
same abstract harmonic label

2/18

This chord
has 4 voices

Composition System Overview

Grammar

Generative
Algorithm

Abstract/Structural
Generation

Abstract Chord
Progressions

Constraint Satisfaction
Algorithm

Chord
Spaces

Additional
Post-ProcessingMusical

Interpretation

Musical
Score

3/18

Probabilistic Temporal
Graph Grammar (PTGG)

(complete music)

PTGGs capture:
1. Harmony
2. Metrical structure
 (sense of rhythm)

Probabilistic Temporal Graph Grammar
(PTGG): Alphabet and Notations

● Chords in the grammar are Roman numerals:
C = {I, II, III, IV, V, II, VII}

● ct is the chord c with duration t (any real number).

● A chord progression is written: c
1

t1 c
2

t2 c
3

t3 … c
n

tn

● Modulations: M = {M
2
, M

3
, M

4
, M

5
, M

6
, M

7
}

– Modulations change a section's key/mode.

– Parentheses are used to denote modulated
sections: m(c

1

t1… c
n

tn), where mM.

● Parentheses are a “meta-symbol”

4/18

PTGG Definition: G = (N,T,R,S)

● Nonterminals: N = {ct | cC, t is a real number}

● Terminals: N  M

● Start symbol S=It, where t is total duration desired.

● Rules are functions of duration from chords to chord
progressions: ct → f(t). For example:

(0.2) It → Vt/2 It/2

(0.1) Vt → M
5
(It)

(0.1) Vt → Vt

(0.1) It → let x=It/2

in x x

Recall: C = {I, II, III, IV, V, II, VII} and M = {M
2
, M

3
, M

4
, M

5
, M

6
, M

7
}

Probability
of application

Both instances of x must be
identical after generation.

5/18

let x = Vt1 It2 in x x 
Vt1 It2 Vt1 It2

These are infinite sets!

Haskell Implementation: Progressions

data CType = I | II | III | IV | V | VI | VII
 deriving (Eq, Show, Ord, Enum)

data MType = M2 | M3 | M4 | M5 | M6 | M7
 deriving (Eq, Show, Ord, Enum)

data Chord = Chord Dur CType
 deriving (Eq, Show)

data Term =
 NT Chord | S [Term] | Mod MType Term |
 Let String Term Term | Var String
 deriving (Eq, Show)

let x = A in B
becomes
Let “x” A B

It becomes Chord t I

6/18

C = {I, II, …, VII}

M = {M
1
, …, M

5
}

Vt1 It2 becomes S [Chord t1 V, Chord t2 I]

Haskell Implementation: Rules
type Prob = Double
type RuleFun = Dur  Term
data Rule = (CType, Prob) : RuleFun

r1 = (I, 0.2) : i

r2 = (I, 0.2) :
t  S [v (t/2), i (t/2)]

r3 = (V, 0.10) : (Mod M5 . i)

r4 = (I, 0.1) : t 
Let “x” (i (t/2)) S [Var “x”, Var “x”]

Shorthand functions:
i t = Chord t I :: RuleFun
ii t = Chord t II :: RuleFun
etc.

7/18

It → It

It → Vt/2 It/2

Vt → M
5
(It)

It → let x=It/2 in x x

Example of Generative Algorithm
Rules Applied (Stochastic)

Start symbol: It

It → IIt/4 Vt/4 It/2

id, Vt→ M
5
 (It), id

(id means ct → ct)

id, It → Vt/2 It/2, It → Vt/2 It/2

I

II V I

II I I

II

Total duration

V IV I

M
5

M
5

For let x = A in B, the phrases A and B are generated separately, leaving
instances of xB unaltered. Then, instances of x can be instantiated.

8/18

Musical Interpretation

TGGG

Generative
Algorithm

Abstract Progressions

Abstract Generation

We use chord spaces as an integral part of our interpretation.

Musical Interpretation
(determines much of style)

Music you can hear

Ex: Iq IVq (M
5
 Ve Ie) Iq

(q = quarter note, e = eighth note)

9/18

Chord Spaces
● Mathematically grouping chords in musically useful ways.

– Each chord belongs to an equivalence class.
● Examples generated with classical chord spaces [1,2] and

also “jazz spaces.”

● Assigning pitches to Roman numerals reduces to a path-
finding and constraint-satisfatction problem [3].

– For each abstract chord, choose a concrete chord
from its equivalence class meeting some criteria.

– Let constraints shrink the search space!

[1] C. Callender et al., “Generalized voice-leading spaces,” Science Magazine 2008.
[2] D. Tymoczko et al., “The geometry of musical chords.” Science Magazine, 2006.
[3] D. Quick and P. Hudak, “Computing with chord spaces,” ICMC 2012.

10/18

Let Constraints and Chord Spaces
● Progression: let x = P Q in x x

 P Q P Q

● Chord space: P~{a,b}, Q~{c,d}

Depth first without lets:

Ind. Value Satisfies Lets?
1 0000 acac Yes
2 0001 acad No
3 0010 acbc No
4 0011 acbd No
5 0100 adac No
... … … …
64 1111 bdbd Yes

Depth first WITH lets:

Ind. Value Satisfies Lets?
1 0000 acac Yes
2 0101 adad Yes
3 1010 bcbc Yes
4 1111 bdbd Yes

Constrained indices move in lock-
step, dramatically reducing the
number of solutions explored.

Imposed ordering/indices: 0 1 0 1

P & Q are abstract
chords, like I or V

a, b, c, & d are
concrete chords

11/18

 System #1
PTGG

Generative
Algorithm

Chord Spaces Constraint
Satisfaction

Abstract Progressions

Abstract Generation

Musical Interpretation

8-measure example.

Classical chord space
for 4 voices.

Shows repetition from
nested Let expressions.

A

B

AB1 B1 B2 B2

12/18

NO extra musical
post-processing!

Same System, More Examples

A B A

A A

Classical chord
spaces

Jazz chord spaces
with a syncopated
rule set.

13/18

 System #2
PTGG

Generative
Algorithm

Classical
Chord Spaces

Constraint
Satisfaction

Basic Foreground Generation

Abstract Progressions

Concrete Progressions

Abstract Generation

Musical Interpretation

Simple Classical Music

Uses classical chord
spaces for 4 voices.

Foreground features
added include passing
and neighboring tones.

Bach chorale for
comparison:

14/18

 System #3
PTGG

Generative
Algorithm

Constraint
Satisfaction

Combine more than one output in parallel

Abstract Progressions

Concrete Progressions

Abstract Generation

Musical Interpretation

Modern, texturally
interesting music

Uses classical chord
spaces for 4 voices.

Parts were generated
independently and later
combined.

Human-controlled:
volume changes,
staggering of voices,
choice of seeds

Classical
Chord Spaces

15/18

 System #4
PTGG

Generative
Algorithm

Constraint
Satisfaction

Simple Rhythmic Modification

Abstract Progressions

Concrete Progressions

Abstract Generation

Musical Interpretation

Jazz Harmonies

Jazz chord spaces add
seconds and sevenths
for 5 voices.

Lowest voice's rhythm
was stochastically
altered.

Jazz Chord
Spaces

16/18

Conclusions
● A functional approach to modeling music gives us:

– An elegant Haskell implementation.

– Let expressions that support repetition of phrases.

● Chord spaces allow many different musical styles.

● Areas of potential future work:

– Melody – currently left to post-processing.

– More diverse rhythmic support (3/4, triplets in 4/4, etc.)

– Larger-scale/more complex developmental patterns

● Theme and variations, partial repetition, etc.
– Empirical testing with human subjects.

● How well is a particular style reproduced?

17/18

Thank You!

● Implementation at: haskell.cs.yale.edu
● Full recordings of examples at:
soundcloud.com/donyaquick

Monadic Algorithm Compositions 1, 2, and 3

18/18

Complete Rule Set

Extra Let rules for all cC:
ct → let x = ct/2 in x x
ct → let x = ct/4 in x ct/2 x
ct → let x = ct/4 in x Vt/2 x

Voice-Leading with Chord Spaces

Suppose we pick
this Cmaj chord

Next chords to choose from

Input chords (abstract):
Cmaj, Gmaj, …

Cmaj chords

Gmaj chords

Constraints
(concrete)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

