Grammar-Based Automated Music Composition in Haskell

Donya Quick and Paul Hudak Yale University Department of Computer Science

FARM 2013

All You Need To Know About Music

- A <u>chord</u> is a collection of simultaneous pitches.
 - Roman numerals I VII are abstract chords.
 - Many ways to interpret them musically.
 - Interpretation depends on <u>key/mode</u>.
 - Concrete chords are what appear on scores.

Composition System Overview

Probabilistic Temporal Graph Grammar (PTGG): Alphabet and Notations

- Chords in the grammar are Roman numerals:
 C = {I, II, III, IV, V, II, VII}
- c^t is the chord c with duration t (any real number).
- A chord progression is written: $c_1^{t1} c_2^{t2} c_3^{t3} \dots c_n^{tn}$
- Modulations: $M = \{M_2, M_3, M_4, M_5, M_6, M_7\}$
 - Modulations change a section's key/mode.
 - Parentheses are used to denote modulated sections: $m(c_1^{t_1} \dots c_n^{t_n})$, where $m \in M$.
 - Parentheses are a "meta-symbol"

PTGG Definition: G = (N,T,R,S)

- Nonterminals: $N = \{c^t \mid c \in C, t \text{ is a real number}\}$
- Terminals: $N \cup M$ These are infinite sets!
- Start symbol $S=I^t$, where *t* is total duration desired.
- Rules are **functions** of duration from chords to chord progressions: $c^t \rightarrow f(t)$. For example:

 $(0.2) I^{t} \rightarrow V^{t/2} I^{t/2}$ Probability $(0.1) V^{t} \rightarrow M_{5}(I^{t})$ $(0.1) V^{t} \rightarrow V^{t}$ $(0.1) V^{t} \rightarrow V^{t}$ $(0.1) I^{t} \rightarrow \text{let } x=I^{t/2} \text{ in } x x$ Both instances of x must be identical after generation. $(0.1) V^{t} \rightarrow V^{t}$ $(0.1) I^{t} \rightarrow \text{let } x=I^{t/2} \text{ in } x x$ $V^{t1} I^{t2} V^{t1} I^{t2}$ Recall: $C = \{I, II, III, IV, V, II, VII\}$ and $M = \{M_{2}, M_{3}, M_{4}, M_{5}, M_{6}, M_{7}\}$

Haskell Implementation: Progressions

data CType = I | II | III | IV | V | VI | VIIderiving (Eq, Show, Ord, Enum)

$$C = \{ \texttt{I}, \texttt{II}, \dots, \texttt{VII} \}$$

data *MType* = *M*2 | *M*3 | *M*4 | *M*5 | *M*6 | *M*7 **deriving** (*Eq*, Show, Ord, Enum)

$$M = \{M_1, ..., M_5\}$$

data Chord = Chord Dur CType
 deriving (Eq, Show)

data Term =
 NT Chord | S [Term] | Mod MType Term |
 Let String Term Term | Var String
 deriving (Eq, Show)

let x = A in B becomes Let "x" A B

becomes Chord t I

 $V^{t1} I^{t2}$ becomes S [Chord t1 V, Chord t2 I]

Τt

Haskell Implementation: Rules

type Prob = Doubletype $RuleFun = Dur \rightarrow Term$ data $Rule = (CType, Prob) : \rightarrow RuleFun$ Shorthand functions: *i* t = Chord t I :: RuleFun *ii* t = Chord t II :: RuleFun etc.

 $\top^t \longrightarrow \top^t$

 $T^{t} \longrightarrow V^{t/2} T^{t/2}$

 $V^{t} \rightarrow M_{5}(I^{t})$

 $r1 = (I, 0.2) :\rightarrow i$

 $r2 = (I, 0.2) : \rightarrow$ $\lambda t \to S [v (t/2), i (t/2)]$

 $r3 = (V, 0.10) :\rightarrow (Mod M5 . i)$

 $r4 = (I, 0.1) :\rightarrow \lambda t \rightarrow$ Let "x" (i (t/2)) S [Var "x", Var "x"] $\mathbb{I}^{t} \rightarrow \text{let } x = \mathbb{I}^{t/2} \text{ in } x x$

Example of Generative Algorithm

Musical Interpretation

We use chord spaces as an integral part of our interpretation.

Chord Spaces

- Mathematically grouping chords in musically useful ways.
 - Each chord belongs to an equivalence class.
- Examples generated with classical chord spaces [1,2] and also "jazz spaces."
- Assigning pitches to Roman numerals reduces to a pathfinding and **constraint-satisfatction** problem [3].
 - For each abstract chord, choose a concrete chord from its equivalence class meeting some criteria.
 - *Let* constraints shrink the search space!

[1] C. Callender et al., "Generalized voice-leading spaces," Science Magazine 2008.
[2] D. Tymoczko et al., "The geometry of musical chords." Science Magazine, 2006.
[3] D. Quick and P. Hudak, "Computing with chord spaces," ICMC 2012.

Let Constraints and Chord Spaces

• Progression: let x = P Q in x x $\Rightarrow P Q P Q$

P & Q are **abstract** chords, like I or V

a, b, c, & d are

concrete chords

Chord space: P~{a,b}, Q~{c,d}
 Imposed ordering/indices: 0 1 0 1

Depth first without lets:

<u>#</u>	<u>Ind.</u>	<u>Value</u>	Satisfies Lets
1	0000	acac	Yes
2	0001	acad	No
3	0010	acbc	No
4	0011	acbd	No
5	0100	adac	No
64	1111	bdbd	Yes

Depth first WITH lets:

Ind.	<u>Value</u>	Satisfies Lets?
0000	acac	Yes
0101	adad	Yes
1010	bcbc	Yes
1111	bdbd	Yes
	<u>Ind.</u> 0000 0101 1010 1111	Ind.Value0000acac0101adad1010bcbc1111bdbd

Constrained indices move in lockstep, dramatically reducing the number of solutions explored.

8-measure example.

Classical chord space for 4 voices.

Shows repetition from nested Let expressions.

NO extra musical post-processing!

IV V

I

Α

M2(V

I) M5(V I)

В

B1

Same System, More Examples

J]

Л

Jazz chord spaces with a syncopated rule set.

Simple Classical Music

Uses classical chord spaces for 4 voices.

Foreground features added include passing and neighboring tones.

Bach chorale for comparison:

Modern, texturally interesting music

Uses classical chord spaces for 4 voices.

Parts were generated independently and later combined.

Human-controlled: volume changes, staggering of voices, choice of seeds

Jazz Harmonies

Jazz chord spaces add seconds and sevenths for 5 voices.

Lowest voice's rhythm was stochastically altered.

Conclusions

- A functional approach to modeling music gives us:
 - An elegant Haskell implementation.
 - *Let* expressions that support repetition of phrases.
- Chord spaces allow many different musical styles.
- Areas of potential future work:
 - Melody currently left to post-processing.
 - More diverse rhythmic support (3/4, triplets in 4/4, etc.)
 - Larger-scale/more complex developmental patterns
 - Theme and variations, partial repetition, etc.
 - Empirical testing with human subjects.
 - How well is a particular style reproduced?

Thank You!

- Implementation at: haskell.cs.yale.edu
- Full recordings of examples at: soundcloud.com/donyaquick

Monadic Algorithm Compositions 1, 2, and 3

Complete Rule Set

Num.	Probability	Rule	Num.	Probability	Rule		
1	0.20	$I^t \rightarrow II^{t/4} V^{t/4} I^{t/2}$	16	0.10	$V^t \rightarrow V^{t/4} V I^{t/4} V I^{t/4} V^{t/4}$		
2	0.20	$I^t \rightarrow I^{t/4} I V^{t/4} V^{t/4} I^{t/4}$	17	0.10	$V^t \rightarrow V^{t/2} V I^{t/2}$		
3	0.20	$I^t \rightarrow V^{t/2} I^{t/2}$	18	0.10	$V^t ightarrow III^t$		
4	0.20	$I^t \rightarrow I^{t/4} I I^{t/4} V^{t/4} I^{t/4}$	19	0.05	$V^t \rightarrow (M_7 \ V^t)$		
5	0.20	$I^t ightarrow I^t$	20	0.10	$V^t ightarrow VII^t$		
6	0.80	$H^t \rightarrow H^t$	22	0.10	$V^t \rightarrow (M_5 \ I^t)$		
7	0.20	$II^t \rightarrow (M_2 \ V^{t/2} \ I^{t/2})$	22	0.70	$VI^t \rightarrow VI^t$		
8	0.70	$III^t \rightarrow III^t$	23	0.30	$VI^t \rightarrow (M_6 \ I^t)$		
9	0.30	$III^t \to (M_3 \ I^t)$	24	0.40	$VII^t \rightarrow VII^t$		
10	0.80	$IV^t ightarrow IV^t$	25	0.50	$VII^t \rightarrow I^{t/2} III^{t/2}$		
11	0.20	$IV^t \rightarrow (M_4 \ I^{t/4} \ V^{t/4} \ I^{t/2})$	26	0.10	$VII^t \rightarrow (M_7 \ I^t)$		
12	0.10	$V^t ightarrow V^t$	_				
13	0.15	$V^t \rightarrow I V^{t/2} V^{t/2}$	Extra Let rules for all $c \in C$: $c^{t} \rightarrow \text{let } x = c^{t/2} \text{ in } x x$ $c^{t} \rightarrow \text{let } x = c^{t/4} \text{ in } x c^{t/2} x$ $c^{t} \rightarrow \text{let } x = c^{t/4} \text{ in } x \vee^{t/2} x$				
14	0.10	$V^t \rightarrow III^{t/2} VI^{t/2}$					
15	0.10	$V^t \rightarrow I^{t/4} III^{t/4} VI^{t/4} I^{t/4}$					

Voice-Leading with Chord Spaces

